메뉴 건너뛰기




Volumn 11, Issue 2, 2016, Pages

Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system

Author keywords

bioinspired neural networks; classification; electronic noses; insect olfaction

Indexed keywords

BIOMIMETICS; CLASSIFICATION (OF INFORMATION); METALS; NEURAL NETWORKS; NEURONS;

EID: 84963522612     PISSN: 17483182     EISSN: 17483190     Source Type: Journal    
DOI: 10.1088/1748-3190/11/2/026002     Document Type: Article
Times cited : (27)

References (28)
  • 1
    • 77951751531 scopus 로고    scopus 로고
    • Metal oxide sensors for electronic noses and their application to food analysis
    • Berna A 2010 Metal oxide sensors for electronic noses and their application to food analysis Sensors 10 3882910
    • (2010) Sensors , vol.10 , pp. 3882910
    • Berna, A.1
  • 2
    • 1942468809 scopus 로고    scopus 로고
    • A review of gas sensors employed in electronic nose applications
    • Arshak K, Moore E, Lyons GM, Harris J and Clifford S 2004 A review of gas sensors employed in electronic nose applications Sens. Rev. 24 18198
    • (2004) Sens. Rev. , vol.24 , pp. 18198
    • Arshak, K.1    Moore, E.2    Lyons, G.M.3    Harris, J.4    Clifford, S.5
  • 3
    • 84867701713 scopus 로고    scopus 로고
    • Signal and data processing for machine olfaction and chemical sensing: A review IEEE
    • Marco S and Gutierrez-Galvez A 2012 Signal and data processing for machine olfaction and chemical sensing: a review IEEE Sens. J. 12 3189214
    • (2012) Sens. J. , vol.12 , pp. 3189214
    • Marco, S.1    Gutierrez-Galvez, A.2
  • 4
    • 84885474355 scopus 로고    scopus 로고
    • Optimal feature selection for classifying a large set of chemicals using metal oxide sensors
    • Nowotny T, Berna AZ, Binions R and Trowell S 2013 Optimal feature selection for classifying a large set of chemicals using metal oxide sensors Sensors Actuators B 187 47180
    • (2013) Sensors Actuators B , vol.187 , pp. 47180
    • Nowotny, T.1    Berna, A.Z.2    Binions, R.3    Trowell, S.4
  • 6
    • 84913554150 scopus 로고    scopus 로고
    • Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications
    • Nowotny T, de Bruyne M, Berna A, WarrCand Trowell S 2014 Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications Bioinsp. Biomim. 9 046007
    • (2014) Bioinsp. Biomim. , vol.9 , pp. 046007
    • Nowotny, T.1    De Bruyne, M.2    Berna, A.3    Warr, C.4    Trowell, S.5
  • 7
    • 68149131968 scopus 로고    scopus 로고
    • Biobenchmarking of electronic nose sensors
    • Berna A Z, Anderson A R and Trowell S C 2009 Biobenchmarking of electronic nose sensors PLoS ONE4 e6406
    • (2009) PLoS ONE , vol.4 , pp. e6406
    • Berna, A.Z.1    Anderson, A.R.2    Trowell, S.C.3
  • 9
    • 24044497219 scopus 로고    scopus 로고
    • Molecular, anatomical, and functional organization of the Drosophila olfactory system
    • Couto A, Alenius M and Dickson B J 2005 Molecular, anatomical, and functional organization of the Drosophila olfactory system Curr. Biol. 15 153547
    • (2005) Curr. Biol. , vol.15 , pp. 153547
    • Couto, A.1    Alenius, M.2    Dickson, B.J.3
  • 10
    • 33645996346 scopus 로고    scopus 로고
    • Coding of odors by a receptor repertoire
    • Hallem E A and Carlson J R 2006 Coding of odors by a receptor repertoire Cell 125 14360
    • (2006) Cell , vol.125 , pp. 14360
    • Hallem, E.A.1    Carlson, J.R.2
  • 11
  • 12
    • 84867824144 scopus 로고    scopus 로고
    • Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain
    • Tanaka NK, Endo K and Ito K 2012 Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain J. Comp. Neurol. 520 4067130
    • (2012) J. Comp. Neurol. , vol.520 , pp. 4067130
    • Tanaka, N.K.1    Endo, K.2    Ito, K.3
  • 14
    • 84893861508 scopus 로고    scopus 로고
    • A neuromorphic network for generic multivariate data classification
    • Schmuker M, Pfeil T and NawrotM2014 A neuromorphic network for generic multivariate data classification Proc. Natl Acad. Sci. 111 16
    • (2014) Proc. Natl Acad. Sci. , vol.111 , pp. 16
    • Schmuker, M.1    Pfeil, T.2    Nawrot, M.3
  • 15
    • 84904865672 scopus 로고    scopus 로고
    • Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex Front
    • Pearce TC, Karout S, Racz Z, Capurro A, Gardner JW and Cole M 2013 Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex Front. Neurosci. 7 119
    • (2013) Neurosci. , vol.7 , pp. 119
    • Pearce, T.C.1    Karout, S.2    Racz, Z.3    Capurro, A.4    Gardner, J.W.5    Cole, M.6
  • 16
    • 0038439322 scopus 로고    scopus 로고
    • Mushroom body memoir: From maps to models
    • Heisenberg M 2003 Mushroom body memoir: from maps to models Nat. Rev. Neurosci. 4 26675
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 26675
    • Heisenberg, M.1
  • 17
    • 70249084937 scopus 로고    scopus 로고
    • Fast and robust learning by reinforcement signals explorations in the insect brain
    • Huerta R and Nowotny T 2009 fast and robust learning by reinforcement signals explorations in the insect brain Neural Comput. 21 212351
    • (2009) Neural Comput. , vol.21 , pp. 212351
    • Huerta, R.1    Nowotny, T.2
  • 18
    • 28544440702 scopus 로고    scopus 로고
    • Self-organization in the olfactory system: One shot odor recognition in insects
    • Nowotny T, Huerta R, Abarbanel HDI and Rabinovich MI 2005 Self-organization in the olfactory system: one shot odor recognition in insects Biol. Cybern. 93 43646
    • (2005) Biol. Cybern. , vol.93 , pp. 43646
    • Nowotny, T.1    Huerta, R.2    Hdi, A.3    Rabinovich, M.I.4
  • 19
    • 0000742931 scopus 로고
    • A neural-gas network learns topologies
    • ed T Kohonen et al (Elsevier)
    • Martinetz T and Schulten K 1991 A neural-gas network learns topologies Artificial Neural Networks vol 1 ed T Kohonen et al (Elsevier) pp 397402
    • (1991) Artificial Neural Networks , vol.1 , pp. 397402
    • Martinetz, T.1    Schulten, K.2
  • 20
    • 77951245686 scopus 로고    scopus 로고
    • The cricket cercal system implements delay-line processing
    • Mulder-Rosi J, Cummins GI and Miller J P 2010 The cricket cercal system implements delay-line processing J. Neurophysiol. 103 182332
    • (2010) J. Neurophysiol. , vol.103 , pp. 182332
    • Mulder-Rosi, J.1    Cummins, G.I.2    Miller, J.P.3
  • 21
    • 85013766625 scopus 로고    scopus 로고
    • Two challenges of correct validation in pattern recognition
    • Nowotny T 2014 Two challenges of correct validation in pattern recognition Front. Robot. AI 1 5
    • (2014) Front. Robot. AI , vol.1 , pp. 5
    • Nowotny, T.1
  • 22
    • 84876928403 scopus 로고    scopus 로고
    • Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
    • Nessler B, Pfeiffer M, Buesing L and MaassW2013 Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity PLoS Comput. Biol. e1003037
    • (2013) PLoS Comput. Biol. , pp. e1003037
    • Nessler, B.1    Pfeiffer, M.2    Buesing, L.3    Maass, W.4
  • 24
    • 84887162642 scopus 로고    scopus 로고
    • Datadriven honeybee antennal lobe model suggests how stimulusonset asynchrony can aid odour segregation
    • Nowotny T, Stierle J, GaliziaCand Szyszka P 2013 Datadriven honeybee antennal lobe model suggests how stimulusonset asynchrony can aid odour segregation Brain Res. 1536 11934
    • (2013) Brain Res. , vol.1536 , pp. 11934
    • Nowotny, T.1    Stierle, J.2    Galizia, C.3    Szyszka, P.4
  • 25
    • 79955966877 scopus 로고    scopus 로고
    • Effectiveness and robustness of robot infotaxis for searching in dilute conditions
    • Moraud EM and Martinez D 2010 Effectiveness and robustness of robot infotaxis for searching in dilute conditions Front. Neurorobot. 4 1
    • (2010) Front. Neurorobot. , vol.4 , pp. 1
    • Moraud, E.M.1    Martinez, D.2
  • 27
    • 84865099641 scopus 로고    scopus 로고
    • Flexible neuronal network simulation framework using code generation for NVIDIA®CUDA
    • Nowotny T 2011 Flexible neuronal network simulation framework using code generation for NVidiaCUDABMC Neurosci. 12 P239
    • (2011) BMC Neurosci. , vol.12 , pp. P239
    • Nowotny, T.1
  • 28
    • 85035254676 scopus 로고    scopus 로고
    • Modeling of spiking-bursting neural behavior using two-dimensional map
    • Rulkov NF 2002 Modeling of spiking-bursting neural behavior using two-dimensional map Phys. Rev. E 65 041922 12
    • (2002) Phys. Rev. e , vol.65 , pp. 041922
    • Rulkov, N.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.