-
1
-
-
84870902015
-
Using mobile phones for activity recognition in Parkinson's patients
-
M. V. Albert, S. Toledo, M. Shapiro, and K. Kording. Using mobile phones for activity recognition in parkinson's patients. Frontiersinneurology, 3, 2012.
-
(2012)
Frontiersinneurology
, pp. 3
-
-
Albert, M.V.1
Toledo, S.2
Shapiro, M.3
Kording, K.4
-
3
-
-
84902126674
-
Hand, belt, pocket or bag: Practical activity tracking with mobile phones
-
S. A. Antos, M. V. Albert, and K. P. Kording. Hand, belt, pocket or bag: Practical activity tracking with mobile phones. Journal of Neuroscience Methods, 231:22-30, 2014.
-
Journal of Neuroscience Methods, 231:22-30, 2014
-
-
Antos, S.A.1
Albert, M.V.2
Kording, K.P.3
-
4
-
-
84866534389
-
Kinect= imu? Learning MIMO signal mappings to automatically translate activity recognition systems across sensor modalities
-
O. Banos, A. Calatroni, M. Damas, H. Pomares, I. Rojas, H. Sagha, J. R. Del Millán, G. Troster, R. Chavarriaga, and D. Roggen. Kinect= imu? learning mimo signal mappings to automatically translate activity recognition systems across sensor modalities. In IEEE Int. Symp. Wearable Computers (ISWC), 2012.
-
(2012)
IEEE Int. Symp. Wearable Computers (ISWC)
-
-
Banos, O.1
Calatroni, A.2
Damas, M.3
Pomares, H.4
Rojas, I.5
Sagha, H.6
Del Millán, J.R.7
Troster, G.8
Chavarriaga, R.9
Roggen, D.10
-
6
-
-
83755195021
-
Evaluation of gyroscope-embedded mobile phones
-
Oct.
-
C. Barthold, K. Subbu, and R. Dantu. Evaluation of gyroscope-embedded mobile phones. In IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC), Oct. 2011.
-
(2011)
IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC)
-
-
Barthold, C.1
Subbu, K.2
Dantu, R.3
-
7
-
-
80051902517
-
Accelerometer calibration and dynamic bias and gravity estimation: Analysis, design, and experimental evaluation
-
P. Batista, C. Silvestre, P. Oliveira, and B. Cardeira. Accelerometer calibration and dynamic bias and gravity estimation: Analysis, design, and experimental evaluation. IEEE Trans. Control Systems Technology, 19(1):1128-1137, 2011.
-
(2011)
IEEE Trans. Control Systems Technology
, vol.19
, Issue.1
, pp. 1128-1137
-
-
Batista, P.1
Silvestre, C.2
Oliveira, P.3
Cardeira, B.4
-
8
-
-
84919904350
-
Robust and energy-efficient trajectory tracking for mobile devices
-
S. Bhattacharya, H. Blunck, M. Kjærgaard, and P. Nurmi. Robust and energy-efficient trajectory tracking for mobile devices. IEEE Trans. Mobile Computing (TMC), 14(2):430-443, 2015.
-
(2015)
IEEE Trans. Mobile Computing (TMC)
, vol.14
, Issue.2
, pp. 430-443
-
-
Bhattacharya, S.1
Blunck, H.2
Kjærgaard, M.3
Nurmi, P.4
-
9
-
-
84912150169
-
Using unlabeled datainasparse-coding framework for human activity recognition
-
S. Bhattacharya, P. Nurmi, N. Hammerla, and T. Plötz. Using unlabeled datainasparse-coding framework for human activity recognition. Pervasive and Mobile Computing, 15(0):242-262, 2014.
-
(2014)
Pervasive and Mobile Computing
, vol.15
, pp. 242-262
-
-
Bhattacharya, S.1
Nurmi, P.2
Hammerla, N.3
Plötz, T.4
-
10
-
-
84861969592
-
Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis
-
ACM
-
G. Bieber, P. Koldrack, C. Sablowski, C. Peter, and B. Urban. Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis. In Intl. Conf. Pervasive Technologies Related to Assistive Environments (PETRA). ACM, 2010.
-
(2010)
Intl. Conf. Pervasive Technologies Related to Assistive Environments (PETRA)
-
-
Bieber, G.1
Koldrack, P.2
Sablowski, C.3
Peter, C.4
Urban, B.5
-
13
-
-
84885212677
-
On heterogeneity in mobile sensing applications aiming at representative data collection
-
ACM
-
H. Blunck, N. O. Bouvin, T. Franke, K. Grønbæk, M. B. Kjærgaard, P. Lukowicz, and M. Wüstenberg. On heterogeneity in mobile sensing applications aiming at representative data collection. In UbiComp'13 Adjunct, pages 1087-1098. ACM, 2013.
-
(2013)
UbiComp'13 Adjunct
, pp. 1087-1098
-
-
Blunck, H.1
Bouvin, N.O.2
Franke, T.3
Grønbæk, K.4
Kjærgaard, M.B.5
Lukowicz, P.6
Wüstenberg, M.7
-
15
-
-
84893936376
-
Atutorialonhuman activity recognition using body-worn inertial sensors
-
A. Bulling, U. Blanke, and B. Schiele. Atutorialonhuman activity recognition using body-worn inertial sensors. Computing Surveys (CSUR, 46(3), 2014.
-
(2014)
Computing Surveys (CSUR
, vol.46
, Issue.3
-
-
Bulling, A.1
Blanke, U.2
Schiele, B.3
-
16
-
-
38749128695
-
Mopet: Acontext-aware and user-adaptive wearable system for fitness training
-
F. Buttussi and L. Chittaro. Mopet: Acontext-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2):153-163, 2008.
-
(2008)
Artificial Intelligence in Medicine
, vol.42
, Issue.2
, pp. 153-163
-
-
Buttussi, F.1
Chittaro, L.2
-
17
-
-
84865739581
-
Extreme learning machine-based device displacement free activity recognition model
-
Y. Chen, Z. Zhao, S. Wang, and Z. Chen. Extreme learning machine-based device displacement free activity recognition model. Soft Computing, 16(9), 2012.
-
(2012)
Soft Computing
, vol.16
, Issue.9
-
-
Chen, Y.1
Zhao, Z.2
Wang, S.3
Chen, Z.4
-
18
-
-
77957018908
-
Mobile phone-based pervasive fall detection
-
J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan. Mobile phone-based pervasive fall detection. Personal Ubiquitous Comput., 14(7), 2010.
-
(2010)
Personal Ubiquitous Comput.
, vol.14
, Issue.7
-
-
Dai, J.1
Bai, X.2
Yang, Z.3
Shen, Z.4
Xuan, D.5
-
19
-
-
84936788440
-
Accelprint: Imperfections of accelerometers make smartphones trackable
-
S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi. Accelprint: Imperfections of accelerometers make smartphones trackable. Network and Distributed System Security Symp. (NDSS), 2014.
-
(2014)
Network and Distributed System Security Symp. (NDSS)
-
-
Dey, S.1
Roy, N.2
Xu, W.3
Choudhury, R.R.4
Nelakuditi, S.5
-
20
-
-
77957017939
-
Preprocessing techniques for context recognition from accelerometer data
-
D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. P. Cardoso. Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7):645-662, 2010.
-
(2010)
Personal and Ubiquitous Computing
, vol.14
, Issue.7
, pp. 645-662
-
-
Figo, D.1
Diniz, P.C.2
Ferreira, D.R.3
Cardoso, J.M.P.4
-
21
-
-
33847172327
-
Clustering by passing messages between data points
-
B. J. Frey and D. Dueck. Clustering by passing messages between data points. science, 315(5814):972-976, 2007.
-
(2007)
Science
, vol.315
, Issue.5814
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
23
-
-
84885228805
-
On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution
-
ACM
-
N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz. On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution. In ISWC. ACM, 2013.
-
(2013)
ISWC
-
-
Hammerla, N.Y.1
Kirkham, R.2
Andras, P.3
Ploetz, T.4
-
26
-
-
84867629766
-
-
PhD thesis, Linköping University, Sweden
-
J. D. Hol. Sensor fusion and calibration of inertial sensors, vision, Ultra-Wideband and GPS. PhD thesis, Linköping University, Sweden, 2011.
-
(2011)
Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-wideband and GPS
-
-
Hol, J.D.1
-
30
-
-
77956382087
-
A survey of mobile phone sensing
-
IEEE
-
N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell. A survey of mobile phone sensing. Communications Magazine, IEEE, 48(9), 2010.
-
(2010)
Communications Magazine
, vol.48
, Issue.9
-
-
Lane, N.1
Miluzzo, E.2
Lu, H.3
Peebles, D.4
Choudhury, T.5
Campbell, A.6
-
32
-
-
38149039398
-
A long-term evaluation of sensing modalities for activity recognition
-
B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille. A long-term evaluation of sensing modalities for activity recognition. In Proceedings of the 10th international conference on Ubiquitous computing (UbiComp), 2007.
-
(2007)
Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp)
-
-
Logan, B.1
Healey, J.2
Philipose, M.3
Tapia, E.M.4
Intille, S.5
-
33
-
-
0043139064
-
Procedure for in-use calibration of triaxial accelerometers in medical applications
-
J. C. Lötters, J. Schipper, P. H. Veltink, W. Olthuis, and P. Bergveld. Procedure for in-use calibration of triaxial accelerometers in medical applications. Sensors and Actuators A: Physical, 68(1-3):221-228, 1998.
-
(1998)
Sensors and Actuators A: Physical
, vol.68
, Issue.1-3
, pp. 221-228
-
-
Lötters, J.C.1
Schipper, J.2
Veltink, P.H.3
Olthuis, W.4
Bergveld, P.5
-
34
-
-
84865011944
-
Online detection of freezing of gait with smartphones and machine learning techniques
-
IEEE
-
S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Troster, M. Plotnik, and J. M. Hausdorff. Online detection of freezing of gait with smartphones and machine learning techniques. In IEEE Intl. Conf. Pervasive Computing Technologies for Healthcare (PervasiveHealth), pages 123-130. IEEE, 2012.
-
(2012)
IEEE Intl. Conf. Pervasive Computing Technologies for Healthcare (PervasiveHealth)
, pp. 123-130
-
-
Mazilu, S.1
Hardegger, M.2
Zhu, Z.3
Roggen, D.4
Troster, G.5
Plotnik, M.6
Hausdorff, J.M.7
-
35
-
-
0000596361
-
Note onthe sampling errorofthe difference between correlated proportions orpercentages
-
Q. McNemar. Note onthe sampling errorofthe difference between correlated proportions orpercentages. Psychometrika, 12(2):153-157, 1947.
-
(1947)
Psychometrika
, vol.12
, Issue.2
, pp. 153-157
-
-
McNemar, Q.1
-
36
-
-
84956957906
-
-
Accessed 17-Mar-2015
-
OpenSignal. Android Fragmentation Visualized. http://opensignal.com/reports/2014/android-fragmentation/, 2014. Accessed 17-Mar-2015.
-
(2014)
Android Fragmentation Visualized
-
-
-
37
-
-
30744462795
-
Activity classification using realistic data from wearable sensors
-
J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. Korhonen. Activity classification using realistic data from wearable sensors. Biomedicine, 10(1):119-128, 2006.
-
(2006)
Biomedicine
, vol.10
, Issue.1
, pp. 119-128
-
-
Pärkkä, J.1
Ermes, M.2
Korpipää, P.3
Mäntyjärvi, J.4
Peltola, J.5
Korhonen, I.6
-
38
-
-
78649514268
-
Slice&dice: Recognizing food preparation activities using embedded accelerometers
-
C. Pham and P. Olivier. Slice&dice: Recognizing food preparation activities using embedded accelerometers. In Intl. Conf. Ambient Intelligent (AmI), 2009.
-
(2009)
Intl. Conf. Ambient Intelligent (AmI)
-
-
Pham, C.1
Olivier, P.2
-
39
-
-
84881045411
-
Feature learning for activity recognition in ubiquitous computing
-
T. Plötz, N. Y. Hammerla, and P. Olivier. Feature learning for activity recognition in ubiquitous computing. In Intl. Joint Conf. Artificial Intelligence (IJCAI), volume 22, page 1729, 2011.
-
(2011)
Intl. Joint Conf. Artificial Intelligence (IJCAI)
, vol.22
, pp. 1729
-
-
Plötz, T.1
Hammerla, N.Y.2
Olivier, P.3
-
41
-
-
65349117069
-
A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
-
S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, and D. Howard. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomedical Engineering, 56(3):871-879, 2009.
-
(2009)
IEEE Trans. Biomedical Engineering
, vol.56
, Issue.3
, pp. 871-879
-
-
Preece, S.J.1
Goulermas, J.Y.2
Kenney, L.P.J.3
Howard, D.4
-
42
-
-
77749264950
-
Using mobile phones to determine transportation modes
-
S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw., 6(2):13:1-13:27, 2010.
-
(2010)
ACM Trans. Sen. Netw.
, vol.6
, Issue.2
, pp. 131-1327
-
-
Reddy, S.1
Mun, M.2
Burke, J.3
Estrin, D.4
Hansen, M.5
Srivastava, M.6
-
43
-
-
83755194966
-
Benchmarking classification techniques using the Opportunity human activity dataset
-
H. Sagha, S. Digumarti, J.del RMillan, R. Chavarriaga, A. Calatroni, D. Roggen, and G. Tröster. Benchmarking classification techniques using the Opportunity human activity dataset. In IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC), 2011.
-
(2011)
IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC)
-
-
Sagha, H.1
Digumarti, S.2
Del Millan, J.R.3
Chavarriaga, R.4
Calatroni, A.5
Roggen, D.6
Tröster, G.7
-
45
-
-
84902821505
-
Activity recognition with smartphone sensors
-
X. Su, H. Tong, and P. Ji. Activity recognition with smartphone sensors. Tsinghua Science and Technology, 19(3):235-249, 2014.
-
(2014)
Tsinghua Science and Technology
, vol.19
, Issue.3
, pp. 235-249
-
-
Su, X.1
Tong, H.2
Ji, P.3
-
46
-
-
85037748867
-
Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations
-
Springer
-
L. Sun, D. Zhang, B. Li, B. Guo, and S. Li. Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Ubiquitous intelligence and computing (UIC). Springer, 2010.
-
(2010)
Ubiquitous Intelligence and Computing (UIC)
-
-
Sun, L.1
Zhang, D.2
Li, B.3
Guo, B.4
Li, S.5
-
47
-
-
72049112876
-
Toward physical activity diary: Motion recognition using simple acceleration features with mobile phones
-
ACM
-
J. Yang. Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In 1st Intl. Workshop Interactive Multimedia for Consumer Electronics, pages 1-10. ACM, 2009.
-
(2009)
1st Intl. Workshop Interactive Multimedia for Consumer Electronics
, pp. 1-10
-
-
Yang, J.1
|