-
1
-
-
84889593981
-
Mining large streams of user data for personalized recommendations
-
Apr
-
X. Amatriain. Mining Large Streams of User Data for Personalized Recommendations. SIGKDD Explor. Newsl., 14(2):37-48, Apr. 2013.
-
(2013)
SIGKDD Explor. Newsl
, vol.14
, Issue.2
, pp. 37-48
-
-
Amatriain, X.1
-
2
-
-
84867389232
-
TasteWeights: A visual interactive hybrid recommender system
-
New York, NY, USA, ACM
-
S. Bostandjiev, J. O'Donovan, and T. HÃu′llerer. TasteWeights: A Visual Interactive Hybrid Recommender System. In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys '12, pages 35-42, New York, NY, USA, 2012. ACM.
-
(2012)
Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys '12
, pp. 35-42
-
-
Bostandjiev, S.1
O'Donovan, J.2
Hãullerer, T.3
-
3
-
-
38549172042
-
Hybrid web recommender systems
-
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, Springer Berlin Heidelberg
-
R. Burke. Hybrid Web Recommender Systems. In P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web, number 4321 in Lecture Notes in Computer Science, pages 377-408. Springer Berlin Heidelberg, 2007.
-
(2007)
The Adaptive Web, Number 4321 in Lecture Notes in Computer Science
, pp. 377-408
-
-
Burke, R.1
-
4
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
ACM, New York, NY, USA
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th International Conference on Machine Learning, ICML '07, pages 129-136, New York, NY, USA, 2007. ACM.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ICML '07
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
5
-
-
84978616090
-
Using groups of items for preference elicitation in recommender systems
-
New York, NY, USA, ACM
-
S. Chang, F. M. Harper, and L. Terveen. Using Groups of Items for Preference Elicitation in Recommender Systems. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW '15, pages 1258-1269, New York, NY, USA, 2015. ACM.
-
Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW '15
, vol.2015
, pp. 1258-1269
-
-
Chang, S.1
Harper, F.M.2
Terveen, L.3
-
6
-
-
77953642308
-
Efficient algorithms for ranking with SVMs
-
Sept
-
O. Chapelle and S. S. Keerthi. Efficient algorithms for ranking with SVMs. Information Retrieval, 13(3):201-215, Sept. 2009.
-
(2009)
Information Retrieval
, vol.13
, Issue.3
, pp. 201-215
-
-
Chapelle, O.1
Keerthi, S.S.2
-
7
-
-
84858701909
-
Critiquing-based recommenders: Survey and emerging trends
-
Oct
-
L. Chen and P. Pu. Critiquing-based recommenders: survey and emerging trends. User Modeling and User-Adapted Interaction, 22(1-2):125-150, Oct. 2011.
-
(2011)
User Modeling and User-Adapted Interaction
, vol.22
, Issue.1-2
, pp. 125-150
-
-
Chen, L.1
Pu, P.2
-
8
-
-
80052799945
-
Looking for "good" recommendations: A comparative evaluation of recommender systems
-
P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, and M. Winckler, editors, Springer Berlin Heidelberg
-
P. Cremonesi, F. Garzotto, S. Negro, A. V. Papadopoulos, and R. Turrin. Looking for "Good" Recommendations: A Comparative Evaluation of Recommender Systems. In P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, and M. Winckler, editors, Human-Computer Interaction-INTERACT 2011, number 6948 in Lecture Notes in Computer Science, pages 152-168. Springer Berlin Heidelberg, 2011.
-
(2011)
Human-Computer Interaction-INTERACT 2011, Number 6948 in Lecture Notes in Computer Science
, pp. 152-168
-
-
Cremonesi, P.1
Garzotto, F.2
Negro, S.3
Papadopoulos, A.V.4
Turrin, R.5
-
9
-
-
84908878885
-
User perception of differences in recommender algorithms
-
New York, NY, USA, ACM
-
M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan. User Perception of Differences in Recommender Algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys '14, pages 161-168, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 8th ACM Conference on Recommender Systems, RecSys '14
, pp. 161-168
-
-
Ekstrand, M.D.1
Harper, F.M.2
Willemsen, M.C.3
Konstan, J.A.4
-
10
-
-
82555195664
-
Rethinking the recommender research ecosystem: Reproducibility, Openness, and LensKit
-
New York, NY, USA, ACM
-
M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl. Rethinking the Recommender Research Ecosystem: Reproducibility, Openness, and LensKit. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys '11, pages 133-140, New York, NY, USA, 2011. ACM.
-
(2011)
Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys '11
, pp. 133-140
-
-
Ekstrand, M.D.1
Ludwig, M.2
Konstan, J.A.3
Riedl, J.T.4
-
11
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
Jan
-
J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst., 22(1):5-53, Jan. 2004.
-
(2004)
ACM Trans. Inf. Syst.
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.T.4
-
12
-
-
84962832196
-
I liked everything i saw on facebook for two days
-
Aug
-
M. Honan. I Liked Everything I Saw on Facebook for Two Days. Here's What It Did to Me, Aug. 2014.
-
(2014)
Here's What It Did to Me
-
-
Honan, M.1
-
13
-
-
77956202935
-
Combining predictions for accurate recommender systems
-
New York, NY, USA, ACM
-
M. Jahrer, A. Toscher, and R. Legenstein. Combining Predictions for Accurate Recommender Systems. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '10, pages 693-702, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '10
, pp. 693-702
-
-
Jahrer, M.1
Toscher, A.2
Legenstein, R.3
-
14
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
New York, NY, USA, ACM
-
Y. Koren. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, pages 426-434, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08
, pp. 426-434
-
-
Koren, Y.1
-
15
-
-
69249119464
-
Learning to rank for information retrieval
-
Mar
-
T.-Y. Liu. Learning to Rank for Information Retrieval. Found. Trends Inf. Retr., 3(3):225-331, Mar. 2009.
-
(2009)
Found. Trends Inf. Retr.
, vol.3
, Issue.3
, pp. 225-331
-
-
Liu, T.-Y.1
-
16
-
-
8344240335
-
Interfaces for eliciting new user preferences in recommender systems
-
P. Brusilovsky, A. Corbett, and F. d. Rosis, editors, Springer Berlin Heidelberg
-
S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. Interfaces for Eliciting New User Preferences in Recommender Systems. In P. Brusilovsky, A. Corbett, and F. d. Rosis, editors, User Modeling 2003, number 2702 in Lecture Notes in Computer Science, pages 178-187. Springer Berlin Heidelberg, 2003.
-
(2003)
User Modeling 2003, Number 2702 in Lecture Notes in Computer Science
, pp. 178-187
-
-
McNee, S.M.1
Lam, S.K.2
Konstan, J.A.3
Riedl, J.4
-
17
-
-
58649100926
-
User-involved preference elicitation for product search and recommender systems
-
P. Pu and L. Chen. User-Involved Preference Elicitation for Product Search and Recommender Systems. Ai Magazine, 29(4):93-103, 2008.
-
(2008)
Ai Magazine
, vol.29
, Issue.4
, pp. 93-103
-
-
Pu, P.1
Chen, L.2
-
18
-
-
78650134987
-
BPR: Bayesian personalized ranking from implicit feedback
-
Arlington, Virginia, United States, AUAI Press
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI '09, pages 452-461, Arlington, Virginia, United States, 2009. AUAI Press.
-
(2009)
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI '09
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt-Thieme, L.4
-
19
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
New York, NY, USA, ACM
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW '01, pages 285-295, New York, NY, USA, 2001. ACM.
-
(2001)
Proceedings of the 10th International Conference on World Wide Web, WWW '01
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
20
-
-
79955164643
-
Evaluating recommendation systems
-
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Springer US
-
G. Shani and A. Gunawardana. Evaluating Recommendation Systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 257-297. Springer US, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 257-297
-
-
Shani, G.1
Gunawardana, A.2
-
22
-
-
0038726008
-
The role of transparency in recommender systems
-
New York, NY, USA, ACM
-
R. Sinha and K. Swearingen. The Role of Transparency in Recommender Systems. In CHI '02 Extended Abstracts on Human Factors in Computing Systems, CHI EA '02, pages 830-831, New York, NY, USA, 2002. ACM.
-
(2002)
CHI '02 Extended Abstracts on Human Factors in Computing Systems, CHI EA '02
, pp. 830-831
-
-
Sinha, R.1
Swearingen, K.2
-
23
-
-
84908877655
-
Ensemble contextual bandits for personalized recommendation
-
New York, NY, USA, ACM
-
L. Tang, Y. Jiang, L. Li, and T. Li. Ensemble Contextual Bandits for Personalized Recommendation. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys '14, pages 73-80, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 8th ACM Conference on Recommender Systems, RecSys '14
, pp. 73-80
-
-
Tang, L.1
Jiang, Y.2
Li, L.3
Li, T.4
|