-
1
-
-
84863344448
-
Online models for content optimization
-
D. Agarwal et al. Online models for content optimization. In NIPS, pages 17-24, 2008.
-
(2008)
NIPS
, pp. 17-24
-
-
Agarwal, D.1
-
2
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002.
-
(2002)
SIAM Journal on Computing
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Freund, Y.2
Schapire, R.E.3
-
5
-
-
84869007958
-
A contextual-bandit algorithm for mobile context-aware recommender system
-
D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A contextual-bandit algorithm for mobile context-aware recommender system. In NIPS, pages 324-331, 2012.
-
(2012)
NIPS
, pp. 324-331
-
-
Bouneffouf, D.1
Bouzeghoub, A.2
Gançarski, A.L.3
-
6
-
-
85162416700
-
An empirical evaluation of thompson sampling
-
O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In NIPS, pages 2249-2257, 2011.
-
(2011)
NIPS
, pp. 2249-2257
-
-
Chapelle, O.1
Li, L.2
-
8
-
-
84873204306
-
Metalearning-A tutorial
-
C. Giraud-Carrier. Metalearning-A tutorial. In ICMLA, 2008.
-
(2008)
ICMLA
-
-
Giraud-Carrier, C.1
-
10
-
-
77956202935
-
Combining predictions for accurate recommender systems
-
ACM
-
M. Jahrer, A. Töscher, and R. Legenstein. Combining predictions for accurate recommender systems. In SIGKDD, pages 693-702. ACM, 2010.
-
(2010)
SIGKDD
, pp. 693-702
-
-
Jahrer, M.1
Legenstein, R.2
-
11
-
-
78650344208
-
The bellkor solution to the netflix grand prize
-
Y. Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 2009.
-
(2009)
Netflix prize documentation
-
-
Koren, Y.1
-
12
-
-
77956144722
-
The epoch-greedy algorithm for contextual multi-armed bandits
-
J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits. NIPS, pages 817-824, 2007.
-
(2007)
NIPS
, pp. 817-824
-
-
Langford, J.1
Zhang, T.2
-
13
-
-
77954641643
-
A contextual-bandit approach to personalized news article recommendation. In
-
ACM
-
L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. In WWW, pages 661-670. ACM, 2010.
-
(2010)
WWW
, pp. 661-670
-
-
Li, L.1
Chu, W.2
Langford, J.3
Schapire, R.E.4
-
14
-
-
79952384747
-
Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms
-
ACM
-
L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In WSDM, pages 297-306. ACM, 2011.
-
(2011)
WSDM
, pp. 297-306
-
-
Li, L.1
Chu, W.2
Langford, J.3
Wang, X.4
-
16
-
-
21844460808
-
Algorithmic stability and meta-learning
-
A. Maurer. Algorithmic stability and meta-learning. In JMLR, pages 967-994, 2005.
-
(2005)
JMLR
, pp. 967-994
-
-
Maurer, A.1
-
17
-
-
84908875385
-
Novel models and ensemble techniques to discriminate favorite items from unrated ones for personalized music recommendation
-
T. G. McKenzie et al. Novel models and ensemble techniques to discriminate favorite items from unrated ones for personalized music recommendation. In KDDCUP, 2011.
-
(2011)
KDDCUP
-
-
McKenzierfaut, T.G.1
-
18
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar. Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3):21-45, 2006.
-
(2006)
Circuits and Systems Magazine, IEEE
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
20
-
-
0037818780
-
Meta-recommendation systems: User-controlled integration of diverse recommendations
-
ACM
-
J. B. Schafer, J. A. Konstan, and J. Riedl. Meta-recommendation systems: User-controlled integration of diverse recommendations. In CIKM, pages 43-51. ACM, 2002.
-
(2002)
CIKM
, pp. 43-51
-
-
Schafer, J.B.1
Konstan, J.A.2
Riedl, J.3
-
21
-
-
0036989477
-
Methods and metrics for cold-start recommendations
-
ACM
-
A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In SIGIR, pages 253-260. ACM, 2002.
-
(2002)
SIGIR
, pp. 253-260
-
-
Schein, A.I.1
Popescul, A.2
Ungar, L.H.3
Pennock, D.M.4
-
26
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pages 285-294, 1933.
-
(1933)
Biometrika
, pp. 285-294
-
-
Thompson, W.R.1
-
27
-
-
42149171217
-
Towards ensemble learning for hybrid music recommendation
-
ACM
-
M. Tiemann and S. Pauws. Towards ensemble learning for hybrid music recommendation. In RecSys, pages 177-178. ACM, 2007.
-
(2007)
RecSys
, pp. 177-178
-
-
Tiemann, M.1
Pauws, S.2
-
28
-
-
78349245906
-
Adaptive e-greedy exploration in reinforcement learning based on value differences
-
M. Tokic. Adaptive e-greedy exploration in reinforcement learning based on value differences. In KI, pages 203-210, 2010.
-
(2010)
KI
, pp. 203-210
-
-
Tokic, M.1
-
29
-
-
33646406807
-
Multi-armed bandit algorithms and empirical evaluation
-
J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation. In ECML, pages 437-448, 2005.
-
(2005)
ECML
, pp. 437-448
-
-
Vermorel, J.1
Mohri, M.2
-
30
-
-
48249137439
-
Collaborative filtering via ensembles of matrix factorizations
-
M. Wu. Collaborative filtering via ensembles of matrix factorizations. In KDDCUP, 2007.
-
(2007)
KDDCUP
-
-
Wu, M.1
-
31
-
-
2342586046
-
Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes
-
K. Yu, A. Schwaighofer, and V. Tresp. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes. In UAI, pages 616-623, 2002.
-
(2002)
UAI
, pp. 616-623
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
-
32
-
-
12244311665
-
Learning and evaluating classifiers under sample selection bias
-
ACM
-
B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In ICML, pages 114-121. ACM, 2004.
-
(2004)
ICML
, pp. 114-121
-
-
Zadrozny, B.1
|