메뉴 건너뛰기




Volumn 8, Issue 3, 2016, Pages

Comparison of data fusion methods using crowdsourced data in creating a hybrid forest cover map

Author keywords

Data fusion methods; Forest map; Geographically weighted regression; Remote sensing

Indexed keywords

DATA FUSION; REGRESSION ANALYSIS; REMOTE SENSING;

EID: 84962618384     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8030261     Document Type: Article
Times cited : (39)

References (56)
  • 1
    • 84927804276 scopus 로고    scopus 로고
    • (accessed on 3 September)
    • Global Climate Observing System. GCOS Essential Climate Variables. Available online: http://www.wmo. int/pages/prog/gcos/index.php?name=EssentialClimateVariables (accessed on 3 September 2013)
    • (2013) GCOS Essential Climate Variables
  • 3
    • 84946545763 scopus 로고    scopus 로고
    • China: Open access to Earth land-cover map
    • Jun, C.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2014, 514, 434-434
    • (2014) Nature , vol.514 , pp. 434-434
    • Jun, C.1    Ban, Y.2    Li, S.3
  • 4
    • 84879047611 scopus 로고    scopus 로고
    • Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach
    • Yu, L.; Wang, J.; Gong, P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 2013, 34, 5851-5867
    • (2013) Int. J. Remote Sens , vol.34 , pp. 5851-5867
    • Yu, L.1    Wang, J.2    Gong, P.3
  • 5
    • 84865430209 scopus 로고    scopus 로고
    • Opening the archive: How free data has enabled the science and monitoring promise of Landsat
    • Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2-10
    • (2012) Remote Sens. Environ , vol.122 , pp. 2-10
    • Wulder, M.A.1    Masek, J.G.2    Cohen, W.B.3    Loveland, T.R.4    Woodcock, C.E.5
  • 13
    • 84888882639 scopus 로고    scopus 로고
    • A review of data fusion techniques
    • Castanedo, F. A review of data fusion techniques. Sci. World J. 2013, 2013, 704504
    • (2013) Sci. World J , vol.2013
    • Castanedo, F.1
  • 14
    • 84859354558 scopus 로고    scopus 로고
    • A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in-situ information
    • Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Fritz, S.; Kraxner, F.; Obersteiner, M. A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in-situ information. J. Land Use Sci. 2011, 6, 245-259
    • (2011) J. Land Use Sci , vol.6 , pp. 245-259
    • Schepaschenko, D.1    McCallum, I.2    Shvidenko, A.3    Fritz, S.4    Kraxner, F.5    Obersteiner, M.6
  • 16
    • 84903173809 scopus 로고    scopus 로고
    • Integrating global land cover products for improved forest cover characterization: An application in North America
    • Song, X.-P.; Huang, C.; Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. Integrating global land cover products for improved forest cover characterization: An application in North America. Int. J. Digit. Earth 2014, 7, 1-16
    • (2014) Int. J. Digit. Earth , vol.7 , pp. 1-16
    • Song, X.-P.1    Huang, C.2    Feng, M.3    Sexton, J.O.4    Channan, S.5    Townshend, J.R.6
  • 17
    • 85027917195 scopus 로고    scopus 로고
    • Bayesian Markov Chain random field cosimulation for improving land cover classification accuracy
    • Li, W.; Zhang, C.; Willig, M.; Dey, D.; Wang, G.; You, L. Bayesian Markov Chain random field cosimulation for improving land cover classification accuracy. Math. Geosci. 2015, 47, 123-148
    • (2015) Math. Geosci , vol.47 , pp. 123-148
    • Li, W.1    Zhang, C.2    Willig, M.3    Dey, D.4    Wang, G.5    You, L.6
  • 18
    • 0842327896 scopus 로고    scopus 로고
    • Delineation of forest/nonforest land use classes using nearest neighbor methods
    • Haapanen, R.; Ek, A.R.; Bauer, M.E.; Finley, A.O. Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sens. Environ. 2004, 89, 265-271
    • (2004) Remote Sens. Environ , vol.89 , pp. 265-271
    • Haapanen, R.1    Ek, A.R.2    Bauer, M.E.3    Finley, A.O.4
  • 19
    • 34247531883 scopus 로고    scopus 로고
    • K Nearest neighbor method for forest inventory using remote sensing data
    • Meng, Q.; Cieszewski, C.J.; Madden, M.; Borders, B.E. K Nearest neighbor method for forest inventory using remote sensing data. GISci. Remote Sens. 2007, 44, 149-165
    • (2007) GISci. Remote Sens , vol.44 , pp. 149-165
    • Meng, Q.1    Cieszewski, C.J.2    Madden, M.3    Borders, B.E.4
  • 20
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: A powerful yet simple technique for ecological data analysis
    • De'ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178-3192
    • (2000) Ecology , vol.81 , pp. 3178-3192
    • De'ath, G.1    Fabricius, K.E.2
  • 22
    • 79960092674 scopus 로고    scopus 로고
    • Galaxy Zoo volunteers share pain and glory of research
    • Clery, D. Galaxy Zoo volunteers share pain and glory of research. Science 2011, 333, 173-175
    • (2011) Science , vol.333 , pp. 173-175
    • Clery, D.1
  • 25
    • 84930621165 scopus 로고    scopus 로고
    • Geographic stacking: Decision fusion to increase global land cover map accuracy
    • Clinton, N.; Yu, L.; Gong, P. Geographic stacking: Decision fusion to increase global land cover map accuracy. Glob. Land Cover Mapp. Monit. 2015, 103, 57-65
    • (2015) Glob. Land Cover Mapp. Monit , vol.103 , pp. 57-65
    • Clinton, N.1    Yu, L.2    Gong, P.3
  • 27
    • 0005149955 scopus 로고    scopus 로고
    • FAO Forestry Paper 163; FAO: Rome, Italy
    • Food and Agriculture Organisation of the United Nations (FAO). Global Forest Resources Assessment 2010; FAO Forestry Paper 163; FAO: Rome, Italy, 2010
    • (2010) Global Forest Resources Assessment 2010
  • 30
    • 84882659985 scopus 로고    scopus 로고
    • Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
    • Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427-448
    • (2013) Int. J. Digit. Earth , vol.6 , pp. 427-448
    • Sexton, J.O.1    Song, X.-P.2    Feng, M.3    Noojipady, P.4    Anand, A.5    Huang, C.6    Kim, D.-H.7    Collins, K.M.8    Channan, S.9    DiMiceli, C.10
  • 32
    • 84870948657 scopus 로고    scopus 로고
    • Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation
    • Verhegghen, A.; Mayaux, P.; De Wasseige, C.; Defourny, P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 2012, 9, 5061-5079
    • (2012) Biogeosciences , vol.9 , pp. 5061-5079
    • Verhegghen, A.1    Mayaux, P.2    De Wasseige, C.3    Defourny, P.4
  • 34
    • 84927966575 scopus 로고    scopus 로고
    • Australian Bureau of Agricultural and Resource Economics and Science: Canberra, Australia, 4th ed
    • Australian Bureau of Agricultural and Resource Economics and Science. Guidelines for Land Use Mapping in Australia: Principles, Procedures and Definitions, 4th ed.; Australian Bureau of Agricultural and Resource Economics and Science: Canberra, Australia, 2011
    • (2011) Guidelines for Land Use Mapping in Australia: Principles, Procedures and Definitions
  • 35
    • 78650890722 scopus 로고    scopus 로고
    • Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia
    • Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens. Environ. 2011, 115, 548-561
    • (2011) Remote Sens. Environ , vol.115 , pp. 548-561
    • Potapov, P.1    Turubanova, S.2    Hansen, M.C.3
  • 37
    • 84880321994 scopus 로고    scopus 로고
    • Using control data to determine the reliability of volunteered geographic information about land cover
    • Comber, A.; See, L.; Fritz, S.; Van der Velde, M.; Perger, C.; Foody, G. Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 37-48
    • (2013) Int. J. Appl. Earth Obs. Geoinf , vol.23 , pp. 37-48
    • Comber, A.1    See, L.2    Fritz, S.3    Van der Velde, M.4    Perger, C.5    Foody, G.6
  • 38
    • 84867032950 scopus 로고    scopus 로고
    • Spatial analysis of remote sensing image classification accuracy
    • Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237-246
    • (2012) Remote Sens. Environ , vol.127 , pp. 237-246
    • Comber, A.1    Fisher, P.2    Brunsdon, C.3    Khmag, A.4
  • 42
    • 78149439885 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining
    • Springer: New York, NY, USA
    • Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; p. 745
    • (2009) Inference, and Prediction , pp. 745
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 43
    • 0003584577 scopus 로고
    • Prentice Hall International Editions Series; Prentice Hall: Upper Saddle River, NJ, USA
    • Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall International Editions Series; Prentice Hall: Upper Saddle River, NJ, USA, 1995
    • (1995) Artificial Intelligence: A Modern Approach
    • Russell, S.J.1    Norvig, P.2
  • 45
    • 0001182913 scopus 로고    scopus 로고
    • Geographically weighted regression-modelling spatial non-stationarity
    • Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc. Ser. Stat. 1998, 47, 431-443
    • (1998) J. R. Stat. Soc. Ser. Stat , vol.47 , pp. 431-443
    • Brunsdon, C.1    Fotheringham, S.2    Charlton, M.3
  • 47
    • 22144438387 scopus 로고    scopus 로고
    • Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems
    • Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 14, 379-393
    • (2005) Glob. Ecol. Biogeogr , vol.14 , pp. 379-393
    • Wang, Q.1    Ni, J.2    Tenhunen, J.3
  • 48
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad, A.; Iverson, L.; Liaw, A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181-199
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.1    Iverson, L.2    Liaw, A.3
  • 49
    • 12844281204 scopus 로고    scopus 로고
    • Risk stratification for in-hospital mortality in acutely decompensated heart failure: Classification and regression tree analysis
    • Fonarow, G.C.; Adams, K.F.; Abraham, W.T.; Yancy, C.W.; Boscardin, W. Risk stratification for in-hospital mortality in acutely decompensated heart failure: Classification and regression tree analysis. J. Am. Med. Assoc. 2005, 293, 572-580
    • (2005) J. Am. Med. Assoc , vol.293 , pp. 572-580
    • Fonarow, G.C.1    Adams, K.F.2    Abraham, W.T.3    Yancy, C.W.4    Boscardin, W.5
  • 52
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 53
    • 20444403521 scopus 로고    scopus 로고
    • Computer Science; IBM Research Division, Thomas J. Watson Research Center: Yorktown Heights, NY, USA
    • Rish, I. An Empirical Study of the Naive Bayes Classifier; Computer Science; IBM Research Division, Thomas J. Watson Research Center: Yorktown Heights, NY, USA, 2015
    • (2015) An Empirical Study of the Naive Bayes Classifier
    • Rish, I.1
  • 55
    • 23444439303 scopus 로고    scopus 로고
    • Techniques for improving the performance of naive bayes for text classification
    • Springer-Verlag: Mexico City, Mexico, Mexico City, Mexico, 13-19 February 2005
    • Schneider, K.-M. Techniques for improving the performance of naive bayes for text classification. In Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, Mexico City, Mexico, 13-19 February 2005; Springer-Verlag: Mexico City, Mexico, 2005; pp. 682-693
    • (2005) Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing , pp. 682-693
    • Schneider, K.-M.1
  • 56
    • 21244497275 scopus 로고    scopus 로고
    • Multicollinearity and correlation among local regression coefficients in geographically weighted regression
    • Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161-187
    • (2005) J. Geogr. Syst , vol.7 , pp. 161-187
    • Wheeler, D.1    Tiefelsdorf, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.