메뉴 건너뛰기




Volumn 9626, Issue , 2016, Pages 466-478

Topic-specific stylistic variations for opinion retrieval on twitter

Author keywords

Microblogs; Opinion retrieval; Stylistic variations

Indexed keywords

INFORMATION RETRIEVAL;

EID: 84962532984     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-30671-1_34     Document Type: Conference Paper
Times cited : (10)

References (24)
  • 2
    • 80053220404 scopus 로고    scopus 로고
    • Cooooooollllllllll!!!!!!!!!: Using word lengthening to detect sentiment in microblogs
    • Brody, S., Diakopoulos, N.: Cooooooollllllllll!!!!!!!!!: using word lengthening to detect sentiment in microblogs. In: EMNLP 2011, pp. 562–570 (2011)
    • (2011) EMNLP 2011 , pp. 562-570
    • Brody, S.1    Diakopoulos, N.2
  • 3
    • 80053371541 scopus 로고    scopus 로고
    • Sentiment retrieval using generative models
    • Eguchi, K., Lavrenko, V.: Sentiment retrieval using generative models. In: EMNLP 2006, pp. 345–354 (2006)
    • (2006) EMNLP 2006 , pp. 345-354
    • Eguchi, K.1    Lavrenko, V.2
  • 5
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR 1999, pp. 50–57 (1999)
    • (1999) SIGIR 1999 , pp. 50-57
    • Hofmann, T.1
  • 6
    • 79956000165 scopus 로고    scopus 로고
    • Empirical study of topic modeling in Twitter
    • Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: SIGKDD Workshop on SMA, pp. 80–88 (2010)
    • (2010) SIGKDD Workshop on SMA , pp. 80-88
    • Hong, L.1    Davison, B.D.2
  • 7
    • 83055184650 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification
    • Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: ACL, HLT 2011, pp. 151–160 (2011)
    • (2011) ACL, HLT 2011 , pp. 151-160
    • Jiang, L.1    Yu, M.2    Zhou, M.3    Liu, X.4    Zhao, T.5
  • 8
    • 85128719106 scopus 로고    scopus 로고
    • Twitter sentiment analysis: The good the bad and the omg!
    • Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg!. In: ICWSM 2011, pp. 538–541 (2011)
    • (2011) ICWSM 2011 , pp. 538-541
    • Kouloumpis, E.1    Wilson, T.2    Moore, J.3
  • 9
    • 72249122753 scopus 로고    scopus 로고
    • Latent dirichlet allocation for tag recommendation
    • Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In: RecSys 2009, pp. 61–68 (2009)
    • (2009) Recsys 2009 , pp. 61-68
    • Krestel, R.1    Fankhauser, P.2    Nejdl, W.3
  • 10
    • 84975803799 scopus 로고    scopus 로고
    • An effective approach to tweets opinion retrieval
    • Luo, Z., Osborne, M., Wang, T.: An effective approach to tweets opinion retrieval. In: WWW 2013, pp. 1–22 (2013)
    • (2013) WWW 2013 , pp. 1-22
    • Luo, Z.1    Osborne, M.2    Wang, T.3
  • 12
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC 2010, pp. 1320–1326 (2010)
    • (2010) LREC 2010 , pp. 1320-1326
    • Pak, A.1    Paroubek, P.2
  • 13
    • 84875460956 scopus 로고    scopus 로고
    • Subjectivity annotation of the microblog 2011 realtime adhoc relevance judgments
    • In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.), Springer, Heidelberg
    • Paltoglou, G., Buckley, K.: Subjectivity annotation of the microblog 2011 realtime adhoc relevance judgments. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 344–355. Springer, Heidelberg (2013)
    • (2013) ECIR 2013. LNCS , vol.7814 , pp. 344-355
    • Paltoglou, G.1    Buckley, K.2
  • 14
    • 84921407090 scopus 로고    scopus 로고
    • Opinion retrieval: Searching for opinions in social media
    • In: Paltoglou, G., Loizides, F., Hansen, P. (eds.), Springer, Heidelberg
    • Paltoglou, G., Giachanou, A.: Opinion retrieval: searching for opinions in social media. In: Paltoglou, G., Loizides, F., Hansen, P. (eds.) Professional Search in the Modern World. LNCS, vol. 8830, pp. 193–214. Springer, Heidelberg (2014)
    • (2014) Professional Search in the Modern World. LNCS , vol.8830 , pp. 193-214
    • Paltoglou, G.1    Giachanou, A.2
  • 15
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)
    • (2008) Found. Trends Inf. Retr , vol.2 , Issue.12 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 16
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.1
  • 17
    • 84890724114 scopus 로고    scopus 로고
    • Characterizing microblogs with topic models
    • Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: ICWSM 2010, pp. 1–8 (2010)
    • (2010) ICWSM 2010 , pp. 1-8
    • Ramage, D.1    Dumais, S.2    Liebling, D.3
  • 18
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: ACL Student Research Workshop, pp. 43–48 (2005)
    • (2005) ACL Student Research Workshop , pp. 43-48
    • Read, J.1
  • 20
    • 84925433076 scopus 로고    scopus 로고
    • Topic-dependent sentiment classification on twitter
    • In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.), Springer, Heidelberg
    • Van Canneyt, S., Claeys, N., Dhoedt, B.: Topic-dependent sentiment classification on twitter. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 441–446. Springer, Heidelberg (2015)
    • (2015) ECIR 2015. LNCS , vol.9022 , pp. 441-446
    • Van Canneyt, S.1    Claeys, N.2    Dhoedt, B.3
  • 21
    • 83055179484 scopus 로고    scopus 로고
    • Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach
    • Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: CIKM 2011, pp. 1031–1040 (2011)
    • (2011) CIKM 2011 , pp. 1031-1040
    • Wang, X.1    Wei, F.2    Liu, X.3    Zhou, M.4    Zhang, M.5
  • 22
    • 70350681184 scopus 로고    scopus 로고
    • Efficient methods for topic model inference on streaming document collections
    • Yao, L., Mimno, D., McCallum, A.: Efficient methods for topic model inference on streaming document collections. In: SIGKDD 2009, pp. 937–946 (2009)
    • (2009) SIGKDD 2009 , pp. 937-946
    • Yao, L.1    Mimno, D.2    McCallum, A.3
  • 23
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: ICDM 2003, pp. 427–434 (2003)
    • (2003) ICDM 2003 , pp. 427-434
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3    Niblack, W.4
  • 24
    • 84995774405 scopus 로고    scopus 로고
    • Comparing twitter and traditional media using topic models
    • In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.), Springer, Heidelberg
    • Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011)
    • (2011) ECIR 2011. LNCS , vol.6611 , pp. 338-349
    • Zhao, W.X.1    Jiang, J.2    Weng, J.3    He, J.4    Lim, E.-P.5    Yan, H.6    Li, X.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.