-
1
-
-
84894567325
-
Good practice in large-scale learning for image classification
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. IEEE Trans. PAMI, 36(3):507-520, 2014.
-
(2014)
IEEE Trans. PAMI
, vol.36
, Issue.3
, pp. 507-520
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
2
-
-
84887499660
-
Large-scale visual sentiment ontology and detectors using adjective noun pairs
-
D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang. Large-scale visual sentiment ontology and detectors using adjective noun pairs. In MM, 2013.
-
(2013)
MM
-
-
Borth, D.1
Ji, R.2
Chen, T.3
Breuel, T.4
Chang, S.-F.5
-
3
-
-
84889584229
-
Predicting retweet count using visual cues
-
E. F. Can, H. Oktay, and R. Manmatha. Predicting retweet count using visual cues. In CIKM, 2013.
-
(2013)
CIKM
-
-
Can, E.F.1
Oktay, H.2
Manmatha, R.3
-
4
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
84904482223
-
-
Technical report, arXiv preprint 1310.1531
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. Technical report, arXiv preprint 1310.1531, 2013.
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
6
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI, 32(9):1627-1645, 2010.
-
(2010)
IEEE Trans. PAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
8
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, 2002.
-
(2002)
SIGKDD
-
-
Joachims, T.1
-
10
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84986596323
-
Overview of the trec2013 microblog track
-
J. Lin and M. Efron. Overview of the trec2013 microblog track. In TREC, 2013.
-
(2013)
TREC
-
-
Lin, J.1
Efron, M.2
-
12
-
-
84894902403
-
Joint image and word sense discrimination for image retrieval
-
A. Lucchi and J. Weston. Joint image and word sense discrimination for image retrieval. In ECCV, 2012.
-
(2012)
ECCV
-
-
Lucchi, A.1
Weston, J.2
-
13
-
-
77952328425
-
New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative
-
B. T. Mark J. Huiskes and M. S. Lew. New trends and ideas in visual concept detection: The mir flickr retrieval evaluation initiative. In ICMR, 2010.
-
(2010)
ICMR
-
-
Mark, B.T.1
Huiskes, J.2
Lew, M.S.3
-
15
-
-
84899727825
-
Nobody comes here anymore, it's too crowded; predicting image popularity on flickr
-
P. J. McParlane, Y. Moshfeghi, and J. M. Jose. Nobody comes here anymore, it's too crowded; predicting image popularity on flickr. In ICMR, 2014.
-
(2014)
ICMR
-
-
McParlane, P.J.1
Moshfeghi, Y.2
Jose, J.M.3
-
16
-
-
84884582871
-
Distance-based image classification: Generalizing to new classes at near-zero cost
-
T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Distance-based image classification: Generalizing to new classes at near-zero cost. IEEE Trans. PAMI, 2013.
-
(2013)
IEEE Trans. PAMI
-
-
Mensink, T.1
Verbeek, J.2
Perronnin, F.3
Csurka, G.4
-
17
-
-
0002965815
-
The proof and measurement of association between two things
-
C. Spearman. The proof and measurement of association between two things. The American Journal of Psychology, 15(1):72-101, 1904.
-
(1904)
The American Journal of Psychology
, vol.15
, Issue.1
, pp. 72-101
-
-
Spearman, C.1
-
18
-
-
77955233534
-
Predicting the popularity of online content
-
G. Szabo and B. A. Huberman. Predicting the popularity of online content. Comm. ACM, 53(8):80-88, 2010.
-
(2010)
Comm. ACM
, vol.53
, Issue.8
, pp. 80-88
-
-
Szabo, G.1
Huberman, B.A.2
-
19
-
-
74549158300
-
Predicting the volume of comments on online news stories
-
M. Tsagkias, W. Weerkamp, and M. De Rijke. Predicting the volume of comments on online news stories. In CIKM, 2009.
-
(2009)
CIKM
-
-
Tsagkias, M.1
Weerkamp, W.2
De Rijke, M.3
-
20
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
|