메뉴 건너뛰기




Volumn 70, Issue , 2016, Pages

TMB: Automatic differentiation and laplace approximation

Author keywords

AD; Automatic differentiation; C++ templates; Latent variables; R; Random effects

Indexed keywords


EID: 84962434200     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v070.i05     Document Type: Article
Times cited : (639)

References (29)
  • 6
    • 79960411743 scopus 로고
    • Computing the Sparse Inverse Subset: An Inverse Multifrontal Approach
    • Computer and Information Sciences Department, University of Florida, Gainesville
    • Campbell Y, Davis T (1995). "Computing the Sparse Inverse Subset: An Inverse Multifrontal Approach." Technical report, Computer and Information Sciences Department, University of Florida, Gainesville.
    • (1995) Technical report
    • Campbell, Y.1    Davis, T.2
  • 7
    • 56349128770 scopus 로고    scopus 로고
    • Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate
    • Chen Y, Davis T, Hager W, Rajamanickam S (2008). "Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate." ACM Transactions on Mathematical Software, 35(3), 22. doi:10.1145/1391989.1391995.
    • (2008) ACM Transactions on Mathematical Software , vol.35 , Issue.3 , pp. 22
    • Chen, Y.1    Davis, T.2    Hager, W.3    Rajamanickam, S.4
  • 8
    • 0002806690 scopus 로고    scopus 로고
    • OpenMP: An Industry Standard API for Shared-Memory Programming
    • Dagum L, Menon R (1998). "OpenMP: An Industry Standard API for Shared-Memory Programming." IEEE Computational Science & Engineering, 5(1), 46-55. doi:10.1109/ 99.660313.
    • (1998) IEEE Computational Science & Engineering , vol.5 , Issue.1 , pp. 46-55
    • Dagum, L.1    Menon, R.2
  • 10
    • 84859172281 scopus 로고    scopus 로고
    • AD Model Builder: Using Automatic Differentiation for Statistical Inference of Highly Parameterized Complex Nonlinear Models
    • Fournier D, Skaug H, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2011). "AD Model Builder: Using Automatic Differentiation for Statistical Inference of Highly Parameterized Complex Nonlinear Models." Optimization Methods and Software, 27(2), 233-249. doi:10.1080/10556788.2011.597854.
    • (2011) Optimization Methods and Software , vol.27 , Issue.2 , pp. 233-249
    • Fournier, D.1    Skaug, H.2    Ancheta, J.3    Ianelli, J.4    Magnusson, A.5    Maunder, M.6    Nielsen, A.7    Sibert, J.8
  • 15
    • 80052029170 scopus 로고
    • Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models)
    • Kass R, Steffey D (1989). "Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models)." Journal of the American Statistical Association, 84(407), 717-726. doi:10.1080/01621459.1989.10478825.
    • (1989) Journal of the American Statistical Association , vol.84 , Issue.407 , pp. 717-726
    • Kass, R.1    Steffey, D.2
  • 17
    • 84900328316 scopus 로고    scopus 로고
    • Estimation of Time-Varying Selectivity in Stock Assessments Using State-Space Models
    • Nielsen A, Berg C (2014). "Estimation of Time-Varying Selectivity in Stock Assessments Using State-Space Models." Fisheries Research, 158, 96-101. doi:10.1016/j.fishres. 2014.01.014.
    • (2014) Fisheries Research , vol.158 , pp. 96-101
    • Nielsen, A.1    Berg, C.2
  • 18
    • 79953029713 scopus 로고    scopus 로고
    • Estimation Methods for Nonlinear State-Space Models in Ecology
    • Pedersen M, Berg C, Thygesen U, Nielsen A, Madsen H (2011). "Estimation Methods for Nonlinear State-Space Models in Ecology." Ecological Modelling, 222(8), 1394-1400. doi: 10.1016/j.ecolmodel.2011.01.007.
    • (2011) Ecological Modelling , vol.222 , Issue.8 , pp. 1394-1400
    • Pedersen, M.1    Berg, C.2    Thygesen, U.3    Nielsen, A.4    Madsen, H.5
  • 20
    • 84962031735 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2016) R: A Language and Environment for Statistical Computing
  • 21
    • 1642351731 scopus 로고    scopus 로고
    • N-Mixture Models for Estimating Population Size from Spatially Replicated Counts
    • Royle J (2004). "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts." Biometrics, 60(1), 108-115. doi:10.1111/j.0006-341x.2004.00142.x.
    • (2004) Biometrics , vol.60 , Issue.1 , pp. 108-115
    • Royle, J.1
  • 22
    • 84962361822 scopus 로고    scopus 로고
    • Marginal Variances for Gaussian Markov Random Fields
    • Norges Teknisk-Naturvitenskapelige Universitet
    • Rue H (2005). "Marginal Variances for Gaussian Markov Random Fields." Statistics Report 1, Norges Teknisk-Naturvitenskapelige Universitet.
    • (2005) Statistics Report 1
    • Rue, H.1
  • 23
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations
    • Rue H, Martino S, Chopin N (2009). "Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations." Journal of the Royal Statistical Society B, 71(2), 319-392. doi:10.1111/j.1467-9868.2008.00700.x.
    • (2009) Journal of the Royal Statistical Society B , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 24
    • 33747839964 scopus 로고    scopus 로고
    • Automatic Approximation of the Marginal Likelihood in Non-Gaussian Hierarchical Models
    • Skaug H, Fournier D (2006). "Automatic Approximation of the Marginal Likelihood in Non-Gaussian Hierarchical Models." Computational Statistics & Data Analysis, 56, 699-709. doi:10.1016/j.csda.2006.03.005.
    • (2006) Computational Statistics & Data Analysis , vol.56 , pp. 699-709
    • Skaug, H.1    Fournier, D.2
  • 25
    • 84901621219 scopus 로고    scopus 로고
    • A Flexible and Automated Likelihood Based Framework for Inference in Stochastic Volatility Models
    • Skaug H, Yu J (2013). "A Flexible and Automated Likelihood Based Framework for Inference in Stochastic Volatility Models." Computational Statistics & Data Analysis. doi:10.1016/ j.csda.2013.10.005.
    • (2013) Computational Statistics & Data Analysis
    • Skaug, H.1    Yu, J.2
  • 28
    • 84865540815 scopus 로고    scopus 로고
    • Getting Started with ADOL-C
    • U Naumann, O Schenk (eds.), chapter 7, CRC Press
    • Walther A, Griewank A (2012). "Getting Started with ADOL-C." In U Naumann, O Schenk (eds.), Combinatorial Scientific Computing, chapter 7, pp. 181-202. CRC Press.
    • (2012) Combinatorial Scientific Computing , pp. 181-202
    • Walther, A.1    Griewank, A.2
  • 29
    • 33845452219 scopus 로고    scopus 로고
    • On the Latent State Estimation of Nonlinear Population Dynamics Using Bayesian and Non-Bayesian State-Space Models
    • Wang G (2007). "On the Latent State Estimation of Nonlinear Population Dynamics Using Bayesian and Non-Bayesian State-Space Models." Ecological Modelling, 200, 521-528. doi: 10.1016/j.ecolmodel.2006.09.004.
    • (2007) Ecological Modelling , vol.200 , pp. 521-528
    • Wang, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.