-
1
-
-
66249135697
-
A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
-
19400727
-
Boller T, Felix G, (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol60: 379–406. doi: 10.1146/annurev.arplant.57.032905.10534619400727
-
(2009)
Annu Rev Plant Biol
, vol.60
, pp. 379-406
-
-
Boller, T.1
Felix, G.2
-
2
-
-
84908620928
-
Danger signals–damaged-self recognition across the tree of life
-
Heil M, Land WG, (2014) Danger signals–damaged-self recognition across the tree of life. Front Plant Sci5: 1–16. doi: 10.3389/fpls.2014.00578
-
(2014)
Front Plant Sci
, vol.5
, pp. 1-16
-
-
Heil, M.1
Land, W.G.2
-
3
-
-
84903535147
-
Plant pattern-recognition receptors
-
24946686
-
Zipfel C, (2014) Plant pattern-recognition receptors. Trends Immunol35: 345–351. doi: 10.1016/j.it.2014.05.00424946686
-
(2014)
Trends Immunol
, vol.35
, pp. 345-351
-
-
Zipfel, C.1
-
4
-
-
77954763024
-
Plant immunity: towards an integrated view of plant-pathogen interactions
-
20585331
-
Dodds PN, Rathjen JP, (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet11: 539–548. doi: 10.1038/nrg281220585331
-
(2010)
Nat Rev Genet
, vol.11
, pp. 539-548
-
-
Dodds, P.N.1
Rathjen, J.P.2
-
5
-
-
79952296398
-
ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
-
21205619
-
Huffaker A, Dafoe N, Schmelz E, (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol155: 1325–1338. doi: 10.1104/pp.110.16671021205619
-
(2011)
Plant Physiol
, vol.155
, pp. 1325-1338
-
-
Huffaker, A.1
Dafoe, N.2
Schmelz, E.3
-
6
-
-
84875832054
-
Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense
-
23509266
-
Huffaker A, Pearce G, Veyrat N, Erb M, Turlings T, et al. (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A110: 5707–5712. doi: 10.1073/pnas.121466811023509266
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 5707-5712
-
-
Huffaker, A.1
Pearce, G.2
Veyrat, N.3
Erb, M.4
Turlings, T.5
-
7
-
-
33745589774
-
An endogenous peptide signal in Arabidopsis activates components of the innate immune response
-
16785434
-
Huffaker A, Pearce G, Ryan CA, (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A103: 10098–10103. doi: 10.1073/pnas.060372710316785434
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10098-10103
-
-
Huffaker, A.1
Pearce, G.2
Ryan, C.A.3
-
8
-
-
33745617058
-
The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells
-
16785433
-
Yamaguchi Y, Pearce G, Ryan CA, (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A103: 10104–10109. doi: 10.1073/pnas.060372910316785433
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10104-10109
-
-
Yamaguchi, Y.1
Pearce, G.2
Ryan, C.A.3
-
9
-
-
77950343795
-
PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
-
20179141
-
Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA, (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell22: 508–522. doi: 10.1105/tpc.109.06887420179141
-
(2010)
Plant Cell
, vol.22
, pp. 508-522
-
-
Yamaguchi, Y.1
Huffaker, A.2
Bryan, A.C.3
Tax, F.E.4
Ryan, C.A.5
-
10
-
-
15544364292
-
Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation
-
15769808
-
Decreux A, Messiaen J, (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol46: 268–278. doi: 10.1093/pcp/pci02615769808
-
(2005)
Plant Cell Physiol
, vol.46
, pp. 268-278
-
-
Decreux, A.1
Messiaen, J.2
-
11
-
-
77952690864
-
A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
-
20439716
-
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G, (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A107: 9452–9457. doi: 10.1073/pnas.100067510720439716
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 9452-9457
-
-
Brutus, A.1
Sicilia, F.2
Macone, A.3
Cervone, F.4
De Lorenzo, G.5
-
12
-
-
84892572037
-
Identification of a plant receptor for extracellular ATP
-
24436418
-
Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, et al. (2014) Identification of a plant receptor for extracellular ATP. Science343: 290–294. doi: 10.1126/science.343.6168.29024436418
-
(2014)
Science
, vol.343
, pp. 290-294
-
-
Choi, J.1
Tanaka, K.2
Cao, Y.3
Qi, Y.4
Qiu, J.5
-
13
-
-
34250872460
-
BAK1 and BKK1 Regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways
-
17600708
-
He K, Gou X, Yuan T, Lin H, Asami T, et al. (2007) BAK1 and BKK1 Regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol17: 1109–1115. doi: 10.1016/j.cub.2007.05.03617600708
-
(2007)
Curr Biol
, vol.17
, pp. 1109-1115
-
-
He, K.1
Gou, X.2
Yuan, T.3
Lin, H.4
Asami, T.5
-
14
-
-
70349473064
-
One for all: the receptor-associated kinase BAK1
-
19748302
-
Chinchilla D, Shan L, He P, de Vries S, Kemmerling B, (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci14: 535–541. doi: 10.1016/j.tplants.2009.08.00219748302
-
(2009)
Trends Plant Sci
, vol.14
, pp. 535-541
-
-
Chinchilla, D.1
Shan, L.2
He, P.3
de Vries, S.4
Kemmerling, B.5
-
15
-
-
79960859584
-
The arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to Hemibiotrophic and Biotrophic pathogens
-
21693696
-
Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, et al. (2011) The arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to Hemibiotrophic and Biotrophic pathogens. Plant Cell23: 2440–2455. doi: 10.1105/tpc.111.08430121693696
-
(2011)
Plant Cell
, vol.23
, pp. 2440-2455
-
-
Roux, M.1
Schwessinger, B.2
Albrecht, C.3
Chinchilla, D.4
Jones, A.5
-
16
-
-
79955572402
-
Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1
-
21593986
-
Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, et al. (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet7: e1002046. doi: 10.1371/journal.pgen.100204621593986
-
(2011)
PLoS Genet
, vol.7
, pp. e1002046
-
-
Schwessinger, B.1
Roux, M.2
Kadota, Y.3
Ntoukakis, V.4
Sklenar, J.5
-
17
-
-
17144376810
-
High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal
-
15803152
-
Lotze MT, Tracey KJ, (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol5: 331–342. doi: 10.1038/nri159415803152
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 331-342
-
-
Lotze, M.T.1
Tracey, K.J.2
-
18
-
-
74549175673
-
High-mobility group box 1 and cancer
-
20123075
-
Tang D, Kang R, Zeh HJ, Lotze MT, (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta1799: 131–140. doi: 10.1016/j.bbagrm.2009.11.01420123075
-
(2010)
Biochim Biophys Acta
, vol.1799
, pp. 131-140
-
-
Tang, D.1
Kang, R.2
Zeh, H.J.3
Lotze, M.T.4
-
19
-
-
79953066407
-
HMGB1 is a therapeutic target for sterile inflammation and infection
-
21219181
-
Andersson U, Tracey KJ, (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol29: 139–162. doi: 10.1146/annurev-immunol-030409-10132321219181
-
(2011)
Annu Rev Immunol
, vol.29
, pp. 139-162
-
-
Andersson, U.1
Tracey, K.J.2
-
20
-
-
0035281548
-
HMG1 and 2, and related “architectural” DNA-binding proteins
-
11246022
-
Thomas JO, Travers AA, . (2001) HMG1 and 2, and related “architectural” DNA-binding proteins. Trends Biochem Sci26: 167–174. doi: 10.1016/S0968-0004(01)01801-111246022
-
(2001)
Trends Biochem Sci
, vol.26
, pp. 167-174
-
-
Thomas, J.O.1
Travers, A.A.2
-
21
-
-
70149084792
-
HMGB1 loves company
-
19414536
-
Bianchi ME, (2009) HMGB1 loves company. J Leukoc Biol86: 573–576. doi: 10.1189/jlb.100858519414536
-
(2009)
J Leukoc Biol
, vol.86
, pp. 573-576
-
-
Bianchi, M.E.1
-
22
-
-
84866378556
-
Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release
-
22869893
-
Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, et al. (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med209: 1519–1528. doi: 10.1084/jem.2012018922869893
-
(2012)
J Exp Med
, vol.209
, pp. 1519-1528
-
-
Venereau, E.1
Casalgrandi, M.2
Schiraldi, M.3
Antoine, D.J.4
Cattaneo, A.5
-
23
-
-
84921328278
-
MD-2 is required for disulfide HMGB1-dependent TLR4 signaling
-
25559892
-
Yang H, Wang H, Ju Z, Ragab A, Lundbäck P, et al. (2015) MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med212: 5–14. doi: 10.1084/jem.2014131825559892
-
(2015)
J Exp Med
, vol.212
, pp. 5-14
-
-
Yang, H.1
Wang, H.2
Ju, Z.3
Ragab, A.4
Lundbäck, P.5
-
24
-
-
84942431410
-
Aspirin’s active metabolite salicylic acid targets human high mobility group box 1 to modulate inflammatory responses
-
26101955
-
Choi HW, Tian M, Song F, Venereau E, Preti A, et al. (2015) Aspirin’s active metabolite salicylic acid targets human high mobility group box 1 to modulate inflammatory responses. Mol Med21: 526–535. doi: 10.2119/molmed.2015.0014826101955
-
(2015)
Mol Med
, vol.21
, pp. 526-535
-
-
Choi, H.W.1
Tian, M.2
Song, F.3
Venereau, E.4
Preti, A.5
-
25
-
-
79958293451
-
Unexpected mobility of plant chromatin-associated HMGB proteins
-
21543902
-
Merkle T, Grasser KD, (2011) Unexpected mobility of plant chromatin-associated HMGB proteins. Plant Signal Behav6: 878–880. doi: 10.4161/psb.6.6.1525521543902
-
(2011)
Plant Signal Behav
, vol.6
, pp. 878-880
-
-
Merkle, T.1
Grasser, K.D.2
-
26
-
-
33845745297
-
Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus
-
17114349
-
Launholt D, Merkle T, Houben A, Schulz A, Grasser K, (2006) Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell18: 2904–2918. doi: 10.1105/tpc.106.04727417114349
-
(2006)
Plant Cell
, vol.18
, pp. 2904-2918
-
-
Launholt, D.1
Merkle, T.2
Houben, A.3
Schulz, A.4
Grasser, K.5
-
27
-
-
78649773492
-
Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins
-
20940346
-
Pedersen D, Merkle T, Marktl B, Lildballe D, Antosch M, et al. (2010) Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins. Plant Physiol154: 1831–1841. doi: 10.1104/pp.110.16305520940346
-
(2010)
Plant Physiol
, vol.154
, pp. 1831-1841
-
-
Pedersen, D.1
Merkle, T.2
Marktl, B.3
Lildballe, D.4
Antosch, M.5
-
28
-
-
0035208670
-
MAPK cascades in plant defense signaling
-
11701380
-
Zhang S, Klessig D, (2001) MAPK cascades in plant defense signaling. Trends Plant Sci6: 520–527. doi: 10.1016/S1360-1385(01)02103-311701380
-
(2001)
Trends Plant Sci
, vol.6
, pp. 520-527
-
-
Zhang, S.1
Klessig, D.2
-
29
-
-
76249117850
-
Pseudomonas syringae Effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP Kinase 4
-
20159621
-
Cui H, Wang Y, Xue L, Chu J, Yan C, et al. (2010) Pseudomonas syringae Effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP Kinase 4. Cell Host Microbe7: 164–175. doi: 10.1016/j.chom.2010.01.00920159621
-
(2010)
Cell Host Microbe
, vol.7
, pp. 164-175
-
-
Cui, H.1
Wang, Y.2
Xue, L.3
Chu, J.4
Yan, C.5
-
30
-
-
17744396451
-
Arabidopsis map kinase 4 negatively regulates systemic acquired resistance
-
11163186
-
Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, et al. (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell103: 1111–1120. doi: 10.1016/S0092-8674(00)00213-011163186
-
(2000)
Cell
, vol.103
, pp. 1111-1120
-
-
Petersen, M.1
Brodersen, P.2
Naested, H.3
Andreasson, E.4
Lindhart, U.5
-
31
-
-
78651342007
-
Callose deposition: a multifaceted plant defense response
-
20955078
-
Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, et al. (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact24: 183–193. doi: 10.1094/MPMI-07-10-014920955078
-
(2011)
Mol Plant-Microbe Interact
, vol.24
, pp. 183-193
-
-
Luna, E.1
Pastor, V.2
Robert, J.3
Flors, V.4
Mauch-Mani, B.5
-
32
-
-
84888414755
-
Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi
-
24104566
-
Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, et al. (2013) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell25: 4227–4241. doi: 10.1105/tpc.113.11701024104566
-
(2013)
Plant Cell
, vol.25
, pp. 4227-4241
-
-
Zhang, W.1
Fraiture, M.2
Kolb, D.3
Löffelhardt, B.4
Desaki, Y.5
-
33
-
-
33847187074
-
Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress
-
17169924
-
Kwak KJ, Kim JY, Kim YO, Kang H, (2007) Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant Cell Physiol48: 221–231. doi: 10.1093/pcp/pcl05717169924
-
(2007)
Plant Cell Physiol
, vol.48
, pp. 221-231
-
-
Kwak, K.J.1
Kim, J.Y.2
Kim, Y.O.3
Kang, H.4
-
34
-
-
54249132459
-
The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis
-
18822296
-
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, et al. (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol384: 9–21. doi: 10.1016/j.jmb.2008.09.01418822296
-
(2008)
J Mol Biol
, vol.384
, pp. 9-21
-
-
Lildballe, D.L.1
Pedersen, D.S.2
Kalamajka, R.3
Emmersen, J.4
Houben, A.5
-
35
-
-
74549114754
-
The role of chromosomal HMGB proteins in plants
-
().:–. Available:
-
Pedersen DS, Grasser KD, (2010) The role of chromosomal HMGB proteins in plants. Biochim Biophys Acta—Gene Regul Mech1799: 171–174. Available: doi: 10.1016/j.bbagrm.2009.11.004
-
(2010)
Biochim Biophys Acta—Gene Regul Mech
, vol.1799
, pp. 171-174
-
-
Pedersen, D.S.1
Grasser, K.D.2
-
36
-
-
84871956605
-
The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins
-
23083132
-
Tian M, von Dahl CC, Liu P-P, Friso G, van Wijk KJ, et al. (2012) The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. Plant J72: 1027–1038. doi: 10.1111/tpj.1201623083132
-
(2012)
Plant J
, vol.72
, pp. 1027-1038
-
-
Tian, M.1
von Dahl, C.C.2
Liu, P.-P.3
Friso, G.4
van Wijk, K.J.5
-
37
-
-
84922248106
-
Identification of multiple salicylic acid-binding proteins using two high throughput screens
-
25628632
-
Manohar M, Tian M, Moreau M, Park SW, Choi HW, et al. (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci5: 777. doi: 10.3389/fpls.2014.0077725628632
-
(2015)
Front Plant Sci
, vol.5
, pp. 777
-
-
Manohar, M.1
Tian, M.2
Moreau, M.3
Park, S.W.4
Choi, H.W.5
-
38
-
-
84927614774
-
Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex
-
25584724
-
Tian M, Sasvari Z, Gonzalez PA, Friso G, Rowland E, et al. (2015) Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex. Mol Plant-Microbe Interact28: 379–386. doi: 10.1094/MPMI-09-14-0259-R25584724
-
(2015)
Mol Plant-Microbe Interact
, vol.28
, pp. 379-386
-
-
Tian, M.1
Sasvari, Z.2
Gonzalez, P.A.3
Friso, G.4
Rowland, E.5
-
39
-
-
0344390892
-
Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation
-
10449575
-
Nawrath C, Métraux J, (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell11: 1393–1404. doi: 10.1105/tpc.11.8.139310449575
-
(1999)
Plant Cell
, vol.11
, pp. 1393-1404
-
-
Nawrath, C.1
Métraux, J.2
-
40
-
-
0035969499
-
Isochorismate synthase is required to synthesize salicylic acid for plant defence
-
11734859
-
Wildermuth MC, Dewdney J, Wu G, Ausubel FM, (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature414: 562–565. doi: 10.1038/3510710811734859
-
(2001)
Nature
, vol.414
, pp. 562-565
-
-
Wildermuth, M.C.1
Dewdney, J.2
Wu, G.3
Ausubel, F.M.4
-
41
-
-
84906311287
-
Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal
-
25097261
-
Salzano S, Checconi P, Hanschmann E, Lillig C, Bowler L, et al. (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A111: 12157–12162. doi: 10.1073/pnas.140171211125097261
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12157-12162
-
-
Salzano, S.1
Checconi, P.2
Hanschmann, E.3
Lillig, C.4
Bowler, L.5
-
42
-
-
84860361435
-
HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4
-
22370717
-
Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, et al. (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med209: 551–563. doi: 10.1084/jem.2011173922370717
-
(2012)
J Exp Med
, vol.209
, pp. 551-563
-
-
Schiraldi, M.1
Raucci, A.2
Muñoz, L.M.3
Livoti, E.4
Celona, B.5
-
43
-
-
0037062934
-
Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
-
12110890
-
Scaffidi P, Misteli T, Bianchi ME, (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418: 191–195. doi: 10.1038/nature0947512110890
-
(2002)
Nature
, vol.418
, pp. 191-195
-
-
Scaffidi, P.1
Misteli, T.2
Bianchi, M.E.3
-
44
-
-
0142137129
-
Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion
-
14532127
-
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, et al. (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J22: 5551–5560. doi: 10.1093/emboj/cdg51614532127
-
(2003)
EMBO J
, vol.22
, pp. 5551-5560
-
-
Bonaldi, T.1
Talamo, F.2
Scaffidi, P.3
Ferrera, D.4
Porto, A.5
-
45
-
-
33751584837
-
Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion
-
17114460
-
Youn JH, Shin J-S, (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol177: 7889–7897. doi: 10.4049/jimmunol.177.11.788917114460
-
(2006)
J Immunol
, vol.177
, pp. 7889-7897
-
-
Youn, J.H.1
Shin, J.-S.2
-
46
-
-
84883478910
-
Protein phosphatase 2A dephosphorylates phosphoserines in nucleocytoplasmic shuttling and secretion of high mobility group box 1
-
23782844
-
Taira J, Kida Y, Kuwano K, Higashimoto Y, (2013) Protein phosphatase 2A dephosphorylates phosphoserines in nucleocytoplasmic shuttling and secretion of high mobility group box 1. J Biochem154: 299–308. doi: 10.1093/jb/mvt05623782844
-
(2013)
J Biochem
, vol.154
, pp. 299-308
-
-
Taira, J.1
Kida, Y.2
Kuwano, K.3
Higashimoto, Y.4
-
47
-
-
84896816054
-
JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation
-
24469805
-
Lu B, Antoine DJ, Kwan K, Lundbäck P, Wähämaa H, et al. (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A111: 3068–3073. doi: 10.1073/pnas.131692511124469805
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 3068-3073
-
-
Lu, B.1
Antoine, D.J.2
Kwan, K.3
Lundbäck, P.4
Wähämaa, H.5
-
48
-
-
0027995328
-
Microheterogeneous cytosolic high-mobility group proteins from Broccoli co-purify with and are phosphorylated by casein kinase II
-
12232253
-
Klimczak L, Cashmore A, (1994) Microheterogeneous cytosolic high-mobility group proteins from Broccoli co-purify with and are phosphorylated by casein kinase II. Plant Physiol105: 911–919. doi: 10.1104/pp.105.3.91112232253
-
(1994)
Plant Physiol
, vol.105
, pp. 911-919
-
-
Klimczak, L.1
Cashmore, A.2
-
49
-
-
0037059761
-
Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions
-
11694523
-
Stemmer C, Schwander A, Bauw G, Fojan P, Grasser K, (2002) Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions. J Biol Chem277: 1092–1098. doi: 10.1074/jbc.M10950320011694523
-
(2002)
J Biol Chem
, vol.277
, pp. 1092-1098
-
-
Stemmer, C.1
Schwander, A.2
Bauw, G.3
Fojan, P.4
Grasser, K.5
-
50
-
-
0037378060
-
Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha
-
12653554
-
Stemmer C, Leeming D, Franssen L, Grimm R, Grasser K, (2003) Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha. Biochemistry42: 3503–3508. doi: 10.1021/bi027350d12653554
-
(2003)
Biochemistry
, vol.42
, pp. 3503-3508
-
-
Stemmer, C.1
Leeming, D.2
Franssen, L.3
Grimm, R.4
Grasser, K.5
-
51
-
-
84862298224
-
NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants
-
22699612
-
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, et al. (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature486: 228–232. doi: 10.1038/nature1116222699612
-
(2012)
Nature
, vol.486
, pp. 228-232
-
-
Fu, Z.Q.1
Yan, S.2
Saleh, A.3
Wang, W.4
Ruble, J.5
-
52
-
-
84863091497
-
The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
-
22813739
-
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, et al. (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep1: 639–647. doi: 10.1016/j.celrep.2012.05.00822813739
-
(2012)
Cell Rep
, vol.1
, pp. 639-647
-
-
Wu, Y.1
Zhang, D.2
Chu, J.Y.3
Boyle, P.4
Wang, Y.5
-
53
-
-
0027490089
-
Purification and characterization of a soluble salicylic acid-binding protein from tobacco
-
8415736
-
Chen Z, Ricigliano JW, Klessig DF, (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci U S A90: 9533–9537. doi: 10.1073/pnas.90.20.95338415736
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 9533-9537
-
-
Chen, Z.1
Ricigliano, J.W.2
Klessig, D.F.3
-
54
-
-
0028848403
-
Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses
-
7479986
-
Durner J, Klessig DF, (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A92: 11312–11316. doi: 10.1073/pnas.92.24.113127479986
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 11312-11316
-
-
Durner, J.1
Klessig, D.F.2
-
55
-
-
69949097909
-
Salicylic Acid, a multifaceted hormone to combat disease
-
19400653
-
Vlot AC, Dempsey DA, Klessig DF, (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol47: 177–206. doi: 10.1146/annurev.phyto.050908.13520219400653
-
(2009)
Annu Rev Phytopathol
, vol.47
, pp. 177-206
-
-
Vlot, A.C.1
Dempsey, D.A.2
Klessig, D.F.3
-
56
-
-
84865580940
-
Salicylic acid biosynthesis and metabolism
-
22303280
-
Dempsey D, Vlot A, Wildermuth M, Klessig D, (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book9: e0156. doi: 10.1199/tab.015622303280
-
(2011)
Arabidopsis Book
, vol.9
, pp. e0156
-
-
Dempsey, D.1
Vlot, A.2
Wildermuth, M.3
Klessig, D.4
-
57
-
-
33746913932
-
Simultaneous metal chelate affinity purification and endotoxin clearance of recombinant antibody fragments
-
16824538
-
Zimmerman T, Petit Frère C, Satzger M, Raba M, Weisbach M, et al. (2006) Simultaneous metal chelate affinity purification and endotoxin clearance of recombinant antibody fragments. J Immunol Methods314: 67–73. doi: 10.1016/j.jim.2006.05.01216824538
-
(2006)
J Immunol Methods
, vol.314
, pp. 67-73
-
-
Zimmerman, T.1
Petit, F.C.2
Satzger, M.3
Raba, M.4
Weisbach, M.5
-
58
-
-
33745393624
-
Highly specific gene silencing by artificial microRNAs in Arabidopsis
-
16531494
-
Schwab R, Schwab R, Ossowski S, Ossowski S, Riester M, et al. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell18: 1121–1133. doi: 10.1105/tpc.105.039834.116531494
-
(2006)
Plant Cell
, vol.18
, pp. 1121-1133
-
-
Schwab, R.1
Schwab, R.2
Ossowski, S.3
Ossowski, S.4
Riester, M.5
-
59
-
-
38949151063
-
Gene silencing in plants using artificial microRNAs and other small RNAs
-
18269576
-
Ossowski S, Schwab R, Weigel D, (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J53: 674–690. doi: 10.1111/j.1365-313X.2007.03328.x18269576
-
(2008)
Plant J
, vol.53
, pp. 674-690
-
-
Ossowski, S.1
Schwab, R.2
Weigel, D.3
-
60
-
-
66649092883
-
Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB
-
19346440
-
Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, et al. (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol150: 815–824. doi: 10.1104/pp.109.13760419346440
-
(2009)
Plant Physiol
, vol.150
, pp. 815-824
-
-
Tian, M.1
Chaudhry, F.2
Ruzicka, D.R.3
Meagher, R.B.4
Staiger, C.J.5
-
61
-
-
84921671460
-
The Infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example
-
O’Leary BM, Rico A, McCraw S, Fones HN, Preston GM, (2014) The Infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J Vis Exp: 1–8. doi: 10.3791/52113
-
(2014)
J Vis Exp
, pp. 1-8
-
-
O’Leary, B.M.1
Rico, A.2
McCraw, S.3
Fones, H.N.4
Preston, G.M.5
-
62
-
-
85027211527
-
Nuclear extraction from Arabidopsis thaliana
-
Xu F, Copeland C, (2012) Nuclear extraction from Arabidopsis thaliana. Bio-protocol2: e306. Available: http://www.bio-protocol.org/e306.
-
(2012)
Bio-protocol
, vol.2
, pp. e306
-
-
Xu, F.1
Copeland, C.2
-
63
-
-
78650666646
-
The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity
-
20635864
-
Choi HW, Kim YJ, Hwang BK, (2011) The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. Mol Plant Microbe Interact24: 68–78. doi: 10.1094/MPMI-02-10-003020635864
-
(2011)
Mol Plant Microbe Interact
, vol.24
, pp. 68-78
-
-
Choi, H.W.1
Kim, Y.J.2
Hwang, B.K.3
-
64
-
-
84960153197
-
Human GAPDH is a target of aspirin’s primary metabolite salicylic acid and its derivatives
-
26606248
-
Choi HW, Tian M, Manohar M, Harraz MM, Park SW, et al. (2015) Human GAPDH is a target of aspirin’s primary metabolite salicylic acid and its derivatives. PLoS One10: e0143447. doi: 10.1371/journal.pone.014344726606248
-
(2015)
PLoS One
, vol.10
, pp. e0143447
-
-
Choi, H.W.1
Tian, M.2
Manohar, M.3
Harraz, M.M.4
Park, S.W.5
-
65
-
-
80054078476
-
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
-
21988835
-
Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol7: 539. doi: 10.1038/msb.2011.7521988835
-
(2011)
Mol Syst Biol
, vol.7
, pp. 539
-
-
Sievers, F.1
Wilm, A.2
Dineen, D.3
Gibson, T.4
Karplus, K.5
|