메뉴 건너뛰기




Volumn 26, Issue 1, 2016, Pages 197-226

Parallel random coordinate descent method for composite minimization: Convergence analysis and error bounds

Author keywords

Composite minimization; Generalized error bound condition; Parallel random coordinate descent algorithm; Partially separable functions; Rate of convergence

Indexed keywords

ERROR ANALYSIS; ERRORS; NONLINEAR EQUATIONS;

EID: 84962393728     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/130950288     Document Type: Article
Times cited : (79)

References (29)
  • 1
    • 84892868336 scopus 로고    scopus 로고
    • On the convergence of block coordinate descent type methods
    • A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM J. Optim., 23 (2013), pp. 2037-2060.
    • (2013) SIAM J. Optim. , vol.23 , pp. 2037-2060
    • Beck, A.1    Tetruashvili, L.2
  • 4
    • 84869480932 scopus 로고    scopus 로고
    • Non-Lipschitzp-regularization and box constrained model for image restoration
    • X. Chen, M. K. Ng, and C. Zhang, Non-Lipschitzp-regularization and box constrained model for image restoration, IEEE Trans. Image Process., 21 (2012), pp. 4709-4721.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4709-4721
    • Chen, X.1    Ng, M.K.2    Zhang, C.3
  • 5
    • 84903607170 scopus 로고    scopus 로고
    • Iteration complexity analysis of block coordinate descent methods
    • Minneapolis, MN
    • M. Hong, X. Wang, M. Razaviyayn, and Z-Q. Luo, Iteration Complexity Analysis of Block Coordinate Descent Methods, Tech. report, University of Minnesota, Minneapolis, MN, 2013; available online from http://arxiv.org/abs/1310.6957.
    • (2013) Tech. Report, University of Minnesota
    • Hong, M.1    Wang, X.2    Razaviyayn, M.3    Luo, Z.-Q.4
  • 6
    • 77956625417 scopus 로고    scopus 로고
    • Randomized methods for linear constraints: Convergence rates and conditioning
    • A. Lewis and D. Leventhal, Randomized methods for linear constraints: Convergence rates and conditioning, Math. Oper. Res., 35 (2010), pp. 641-654.
    • (2010) Math. Oper. Res. , vol.35 , pp. 641-654
    • Lewis, A.1    Leventhal, D.2
  • 7
    • 84937977284 scopus 로고    scopus 로고
    • On the complexity analysis of randomized block-coordinate descent methods
    • Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, Math. Program., 152 (2015), pp. 615-642.
    • (2015) Math. Program. , vol.152 , pp. 615-642
    • Lu, Z.1    Xiao, L.2
  • 8
    • 21344480786 scopus 로고
    • Error bounds and convergence analysis of feasible descent methods: A general approach
    • Z. Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A general approach, Ann. Oper. Res., 46 (1993), pp. 157-178.
    • (1993) Ann. Oper. Res. , vol.46 , pp. 157-178
    • Luo, Z.Q.1    Tseng, P.2
  • 9
    • 84880860760 scopus 로고    scopus 로고
    • Random coordinate descent algorithms for multi-agent convex optimization over networks
    • I. Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks, IEEE Trans. Automat. Control, 58 (2013), pp. 2001-2012.
    • (2013) IEEE Trans. Automat. Control , vol.58 , pp. 2001-2012
    • Necoara, I.1
  • 10
    • 84874622647 scopus 로고    scopus 로고
    • Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC
    • I. Necoara and D. Clipici, Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC, J. Process Contr., 23 (2013), pp. 243-253.
    • (2013) J. Process Contr. , vol.23 , pp. 243-253
    • Necoara, I.1    Clipici, D.2
  • 11
    • 84962399658 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for composite minimization: Convergence analysis and error bounds
    • Bucharest, Romania
    • I. Necoara and D. Clipici, Parallel Coordinate Descent Methods for Composite Minimization: Convergence Analysis and Error Bounds, Tech. report, University Politehnica Bucharest, Bucharest, Romania, 2013; available online from http://arxiv.org/abs/1312.5302.
    • (2013) Tech. Report, University Politehnica Bucharest
    • Necoara, I.1    Clipici, D.2
  • 12
    • 84940929095 scopus 로고    scopus 로고
    • Parallel and distributed random coordinate descent method for convex error bound minimization
    • I. Necoara and R. Findeisen, Parallel and distributed random coordinate descent method for convex error bound minimization, in Proceedings of the American Control Conference, 2015, pp. 527-532.
    • (2015) Proceedings of the American Control Conference , pp. 527-532
    • Necoara, I.1    Findeisen, R.2
  • 13
    • 84899635844 scopus 로고    scopus 로고
    • Rate analysis of inexact dual first order methods: Application to dual decomposition
    • I. Necoara and V. Nedelcu, Rate analysis of inexact dual first order methods: Application to dual decomposition, IEEE Trans. Automat. Control, 59 (2014), pp. 1232-1243.
    • (2014) IEEE Trans. Automat. Control , vol.59 , pp. 1232-1243
    • Necoara, I.1    Nedelcu, V.2
  • 14
    • 84880899148 scopus 로고    scopus 로고
    • Random block coordinate descent methods for linearly constrained optimization over networks
    • Bucharest, Romania
    • I. Necoara, Yu. Nesterov, and F. Glineur, Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks, Tech. report, University Politehnica Bucharest, Bucharest, Romania, 2011; available online from http://arxiv.org/abs/1504. 06340.
    • (2011) Tech. Report, University Politehnica Bucharest
    • Necoara, I.1    Nesterov, Yu.2    Glineur, F.3
  • 15
    • 84894444593 scopus 로고    scopus 로고
    • A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints
    • I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Comput. Optim. Appl., 57 (2014), pp. 307-337.
    • (2014) Comput. Optim. Appl. , vol.57 , pp. 307-337
    • Necoara, I.1    Patrascu, A.2
  • 16
    • 70450125171 scopus 로고    scopus 로고
    • An interior-point Lagrangian decomposition method for separable convex optimization
    • I. Necoara and J. A. K. Suykens, An interior-point Lagrangian decomposition method for separable convex optimization, J. Optim. Theory Appl., 143 (2009), pp. 567-588.
    • (2009) J. Optim. Theory Appl. , vol.143 , pp. 567-588
    • Necoara, I.1    Suykens, J.A.K.2
  • 18
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim., 22 (2012), pp. 341-362.
    • (2012) SIAM J. Optim. , vol.22 , pp. 341-362
    • Nesterov, Yu.1
  • 19
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective functions
    • Yu. Nesterov, Gradient methods for minimizing composite objective functions, Mathematical Programming, 140 (2013), pp. 125-161.
    • (2013) Mathematical Programming , vol.140 , pp. 125-161
    • Nesterov, Yu.1
  • 21
    • 70450201554 scopus 로고    scopus 로고
    • Incremental stochastic subgradient algorithms for convex optimization
    • S. S. Ram, A. Nedić, and V. V. Veeravalli, Incremental stochastic subgradient algorithms for convex optimization, SIAM J. Optim., 20 (2009), pp. 691-717.
    • (2009) SIAM J. Optim. , vol.20 , pp. 691-717
    • Ram, S.S.1    Nedić, A.2    Veeravalli, V.V.3
  • 22
    • 84899031876 scopus 로고    scopus 로고
    • Distributed coordinate descent method for learning with big data
    • Edinburgh, Scotland
    • P. Richtárik and M. Takáč, Distributed Coordinate Descent Method for Learning with Big Data, Tech. report, University of Edinburgh, Edinburgh, Scotland, 2013.
    • (2013) Tech. Report, University of Edinburgh
    • Richtárik, P.1    Takáč, M.2
  • 23
    • 84958109123 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for big data optimization
    • P. Richtárik and M. Takáč, Parallel coordinate descent methods for big data optimization, Math. Program., DOI:10.1007/s10107-0150901-6, 2015.
    • Math. Program. , vol.2015
    • Richtárik, P.1    Takáč, M.2
  • 24
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Math. Program., 144 (2014), pp. 1-38.
    • (2014) Math. Program. , vol.144 , pp. 1-38
    • Richtárik, P.1    Takáč, M.2
  • 25
    • 0002077305 scopus 로고
    • Bounds for error in the solution set of a perturbed linear program
    • S. M. Robinson, Bounds for error in the solution set of a perturbed linear program, Linear Algebra Appl., 6 (1973), pp. 69-81.
    • (1973) Linear Algebra Appl. , vol.6 , pp. 69-81
    • Robinson, S.M.1
  • 27
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for wholebrain classification of fMRI data
    • S. Ryali, K. Supekar, D. A. Abrams, and V. Menone, Sparse logistic regression for wholebrain classification of FMRI data, NeuroImage, 51 (2010), pp. 752-764.
    • (2010) NeuroImage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menone, V.4
  • 28
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program., 117 (2009), pp. 387-423.
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 29
    • 84901632905 scopus 로고    scopus 로고
    • Iteration complexity of feasible descent methods for convex optimization
    • P. W. Wang and C. J. Lin, Iteration complexity of feasible descent methods for convex optimization, J. Mach. Learn. Res., 14 (2014), pp. 1523-1548.
    • (2014) J. Mach. Learn. Res. , vol.14 , pp. 1523-1548
    • Wang, P.W.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.