메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages 91-99

Deep learning for estimating building energy consumption

Author keywords

Artificial Neural Networks; Conditional Restricted Boltzmann Machine; Energy prediction; Factored Conditional Restricted Boltzmann Machine

Indexed keywords


EID: 84962199062     PISSN: None     EISSN: 23524677     Source Type: Journal    
DOI: 10.1016/j.segan.2016.02.005     Document Type: Article
Times cited : (527)

References (35)
  • 1
    • 84869871543 scopus 로고    scopus 로고
    • Building operation and energy performance: Monitoring, analysis and optimisation toolkit
    • Costa A., Keane M.M., Torrens J.I., Corry E. Building operation and energy performance: Monitoring, analysis and optimisation toolkit. Appl. Energy 2013, 101:310-316. 10.1016/j.apenergy.2011.10.037.
    • (2013) Appl. Energy , vol.101 , pp. 310-316
    • Costa, A.1    Keane, M.M.2    Torrens, J.I.3    Corry, E.4
  • 2
    • 84888413374 scopus 로고    scopus 로고
    • Thermal comfort and building energy consumption implications-A review
    • Yang L., Yan H., Lam J.C. Thermal comfort and building energy consumption implications-A review. Appl. Energy 2014, 115:164-173. 10.1016/j.apenergy.2013.10.062.
    • (2014) Appl. Energy , vol.115 , pp. 164-173
    • Yang, L.1    Yan, H.2    Lam, J.C.3
  • 5
    • 4344664803 scopus 로고    scopus 로고
    • Energy Audit of Building Systems: An Engineering Approach
    • second ed., Mechanical and Aerospace Engineering Series
    • M. Krarti, Energy Audit of Building Systems: An Engineering Approach, second ed., Mechanical and Aerospace Engineering Series, 2011.
    • (2011)
    • Krarti, M.1
  • 6
    • 77955152986 scopus 로고    scopus 로고
    • Artificial intelligence for energy conservation in buildings
    • Dounis A.I. Artificial intelligence for energy conservation in buildings. Adv. Build. Energy Res. 2010, 4(1):267-299. 10.3763/aber.2009.0408.
    • (2010) Adv. Build. Energy Res. , vol.4 , Issue.1 , pp. 267-299
    • Dounis, A.I.1
  • 7
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: A review
    • Foucquier A., Robert S., Suard F., Stéphan L., Jay A. State of the art in building modelling and energy performances prediction: A review. Renewable Sustainable Energy Rev. 2013, 23:272-288. 10.1016/j.rser.2013.03.004.
    • (2013) Renewable Sustainable Energy Rev. , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stéphan, L.4    Jay, A.5
  • 8
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • Xiang Zhao H., Magoulès F. A review on the prediction of building energy consumption. Renewable Sustainable Energy Rev. 2012, 16(6):3586-3592. 10.1016/j.rser.2012.02.049.
    • (2012) Renewable Sustainable Energy Rev. , vol.16 , Issue.6 , pp. 3586-3592
    • Xiang Zhao, H.1    Magoulès, F.2
  • 9
    • 84856253869 scopus 로고    scopus 로고
    • Short-term load forecasting based on a semi-parametric additive model
    • Fan S., Hyndman R. Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst. 2012, 27(1):134-141. 10.1109/TPWRS.2011.2162082.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.1 , pp. 134-141
    • Fan, S.1    Hyndman, R.2
  • 10
    • 77956265820 scopus 로고    scopus 로고
    • Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles
    • Taylor J.W. Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles. Int. J. Forecast. 2010, 26(4):627-646. 10.1016/j.ijforecast.2010.02.009.
    • (2010) Int. J. Forecast. , vol.26 , Issue.4 , pp. 627-646
    • Taylor, J.W.1
  • 11
    • 84855999011 scopus 로고    scopus 로고
    • Forecasting time series with complex seasonal patterns using exponential smoothing
    • Livera A.M.D., Hyndman R.J., Snyder R.D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Amer. Statist. Assoc. 2011, 106(496):1513-1527. 10.1198/jasa.2011.tm09771.
    • (2011) J. Amer. Statist. Assoc. , vol.106 , Issue.496 , pp. 1513-1527
    • Livera, A.M.D.1    Hyndman, R.J.2    Snyder, R.D.3
  • 12
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Aydinalp-Koksal M., Ugursal V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl. Energy 2008, 85(4):271-296.
    • (2008) Appl. Energy , vol.85 , Issue.4 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 13
    • 84928795768 scopus 로고    scopus 로고
    • Smart grid and smart building inter-operation using agent-based particle swarm optimization
    • Hurtado L.A., Nguyen P.H., Kling W.L. Smart grid and smart building inter-operation using agent-based particle swarm optimization. Sustain. Energy, Grids Netw. 2015, 2:32-40. 10.1016/j.segan.2015.03.003.
    • (2015) Sustain. Energy, Grids Netw. , vol.2 , pp. 32-40
    • Hurtado, L.A.1    Nguyen, P.H.2    Kling, W.L.3
  • 15
    • 75449093272 scopus 로고    scopus 로고
    • Artificial neural networks for energy analysis of office buildings with daylighting
    • Wong S., Wan K.K., Lam T.N. Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 2010, 87(2):551-557.
    • (2010) Appl. Energy , vol.87 , Issue.2 , pp. 551-557
    • Wong, S.1    Wan, K.K.2    Lam, T.N.3
  • 16
    • 64549099947 scopus 로고    scopus 로고
    • Artificial neural networks in energy applications in buildings
    • Kalogirou S.A. Artificial neural networks in energy applications in buildings. Int. J. Low-Carbon Technol. 2006, 1(3):201-216.
    • (2006) Int. J. Low-Carbon Technol. , vol.1 , Issue.3 , pp. 201-216
    • Kalogirou, S.A.1
  • 17
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • Yang J., Rivard H., Zmeureanu R. On-line building energy prediction using adaptive artificial neural networks. Energy Build. 2005, 37(12):1250-1259.
    • (2005) Energy Build. , vol.37 , Issue.12 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureanu, R.3
  • 18
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • also published as a book. Now Publishers, 2009
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127. also published as a book. Now Publishers, 2009. 10.1561/2200000006.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 20
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • Taylor G.W., Hinton G.E., Roweis S.T. Two distributed-state models for generating high-dimensional time series. J. Mach. Learn. Res. 2011, 12:1025-1068.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 23
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: The learning machines
    • Jones N. Computer science: The learning machines. Nature 2014, 505(7482):146-148. 10.1038/505146a.
    • (2014) Nature , vol.505 , Issue.7482 , pp. 146-148
    • Jones, N.1
  • 24
    • 84897953259 scopus 로고    scopus 로고
    • From neural networks to deep learning: zeroing in on the human brain
    • Laserson J. From neural networks to deep learning: zeroing in on the human brain. ACM Crossroads 2011, 18(1):29-34.
    • (2011) ACM Crossroads , vol.18 , Issue.1 , pp. 29-34
    • Laserson, J.1
  • 26
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • MIT Press, Cambridge, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Smolensky P. Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: Volume 1: Foundations 1987, 194-281. MIT Press, Cambridge. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1987) Parallel Distributed Processing: Volume 1: Foundations , pp. 194-281
    • Smolensky, P.1
  • 27
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14(8):1771-1800. 10.1162/089976602760128018.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 28
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository
    • K. Bache, M. Lichman, UCI machine learning repository, 2013. URL: http://archive.ics.uci.edu/ml.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 29
    • 84962191303 scopus 로고    scopus 로고
    • [link]. URL: http://www.mathworks.nl/products/neural-network.
  • 30
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11(2):431-441. 10.1137/0111030.
    • (1963) SIAM J. Appl. Math. , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.W.1
  • 31
  • 32
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3(3):127-149.
    • (2009) Comput. Sci. Rev. , vol.3 , Issue.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 33
    • 84872502995 scopus 로고    scopus 로고
    • A practical guide to applying echo state networks
    • Neural Networks: Tricks of the Trade
    • Lukoševičius M. A practical guide to applying echo state networks. Lecture Notes in Computer Science 2012, vol. 7700.
    • (2012) Lecture Notes in Computer Science , vol.7700
    • Lukoševičius, M.1
  • 34
    • 0016750222 scopus 로고
    • Robust estimation and outlier detection with correlation coefficients
    • Devlin S.J., Gnanadesikan R., Kettenring J.R. Robust estimation and outlier detection with correlation coefficients. Biometrika 1975, 62(3):531-545.
    • (1975) Biometrika , vol.62 , Issue.3 , pp. 531-545
    • Devlin, S.J.1    Gnanadesikan, R.2    Kettenring, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.