-
1
-
-
0034054973
-
-
Chong, J. M.; Shen, L.; Taylor, N. J. J. Am. Chem. Soc. 2000, 122, 1822-1823.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 1822-1823
-
-
Chong, J.M.1
Shen, L.2
Taylor, N.J.3
-
2
-
-
4344625966
-
-
Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701-2704.
-
(2004)
Org. Lett
, vol.6
, pp. 2701-2704
-
-
Wu, T.R.1
Shen, L.2
Chong, J.M.3
-
5
-
-
33749514608
-
-
Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128, 12660-12661.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 12660-12661
-
-
Lou, S.1
Moquist, P.N.2
Schaus, S.E.3
-
6
-
-
37049035131
-
-
Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398-15404.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 15398-15404
-
-
Lou, S.1
Moquist, P.N.2
Schaus, S.E.3
-
9
-
-
84962465666
-
-
Gaussian Inc, Wallingford, CT
-
Frisch, M. J.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, 2004.
-
(2004)
Gaussian 03, Revision
, Issue.C.02
-
-
Frisch, M.J.1
-
10
-
-
84962465663
-
-
Jaguar, version 6.5; Schrodinger LLC: New York, 2005
-
Jaguar, version 6.5; Schrodinger LLC: New York, 2005.
-
-
-
-
12
-
-
0345491105
-
-
(b) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.T.1
Yang, W.T.2
Parr, R.G.3
-
15
-
-
0035850510
-
-
For example see:a
-
For example see:(a) Pellegrinet, S. C.; Silva, M. A.; Goodman, J. M. J. Am. Chem. Soc. 2001, 123, 8832-8837.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 8832-8837
-
-
Pellegrinet, S.C.1
Silva, M.A.2
Goodman, J.M.3
-
16
-
-
0037111678
-
-
(b) Silva, M. A.; Pellegrinet, S. C.; Goodman, J. M. J. Org. Chem. 2002, 67, 8203-8209.
-
(2002)
J. Org. Chem
, vol.67
, pp. 8203-8209
-
-
Silva, M.A.1
Pellegrinet, S.C.2
Goodman, J.M.3
-
17
-
-
0038626828
-
-
(c) Silva, M. A.; Pellegrinet, S. C.; Goodman, J. M. J. Org. Chem. 2003, 68, 4059-4066.
-
(2003)
J. Org. Chem
, vol.68
, pp. 4059-4066
-
-
Silva, M.A.1
Pellegrinet, S.C.2
Goodman, J.M.3
-
18
-
-
3242675051
-
-
(d) Silva, M. A.; Pellegrinet, S. C.; Goodman, J. M. Arkivoc 2003, 10, 556-565.
-
(2003)
Arkivoc
, vol.10
, pp. 556-565
-
-
Silva, M.A.1
Pellegrinet, S.C.2
Goodman, J.M.3
-
21
-
-
36148995600
-
-
(a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
-
(1985)
J. Chem. Phys
, vol.83
, pp. 735-746
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
22
-
-
0011083499
-
-
(b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
-
(1988)
Chem. Rev
, vol.88
, pp. 899-926
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
23
-
-
84962397250
-
-
NBO, Version 3.1; Glendening, E. D, Reed, A. E, Carpenter, J. E, Weinhold, F
-
NBO, Version 3.1; Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F.
-
-
-
-
24
-
-
84946893847
-
-
(a) Miertus, S.; Scrocco, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117-129.
-
(1981)
J. Chem. Phys
, vol.55
, pp. 117-129
-
-
Miertus, S.1
Scrocco, E.2
Tomasi, J.3
-
26
-
-
84962397269
-
-
We were unable to locate the TSs for the formation of complexes 1b-2b.
-
We were unable to locate the TSs for the formation of complexes 1b-2b.
-
-
-
-
27
-
-
84962397267
-
-
Ratios were computed by using Boltzmann factors based on activation free energies and are of qualitative value. Calculations demonstrated that the endo transition structures contribute to the ratio by less than 0.1
-
Ratios were computed by using Boltzmann factors based on activation free energies and are of qualitative value. Calculations demonstrated that the endo transition structures contribute to the ratio by less than 0.1%.
-
-
-
-
28
-
-
84962397268
-
-
This scheme can also be applied to rationalize and predict the enantioselectivity of the conjugate alkynylboration of enones (see ref 4, Enantiomeric (S)-binaphthols were used in the conjugate alkynylboration of enones, so the bond forms to the back face of the enone
-
This scheme can also be applied to rationalize and predict the enantioselectivity of the conjugate alkynylboration of enones (see ref 4). Enantiomeric (S)-binaphthols were used in the conjugate alkynylboration of enones, so the bond forms to the back face of the enone.
-
-
-
-
29
-
-
84962475186
-
-
We performed conformational searches to locate the lower energy conformation for these TSs at the RHF/AMI level of theory and then reoptimized selected structures with the B3LYP/63ILAN method
-
We performed conformational searches to locate the lower energy conformation for these TSs at the RHF/AMI level of theory and then reoptimized selected structures with the B3LYP/63ILAN method.
-
-
-
-
30
-
-
23944465006
-
-
For a review on boron-substituted building blocks in cycloaddition reactions see
-
For a review on boron-substituted building blocks in cycloaddition reactions see: Hilt, G.; Bolze, P. Synthesis 2005, 2091-2115.
-
(2005)
Synthesis
, pp. 2091-2115
-
-
Hilt, G.1
Bolze, P.2
-
33
-
-
0026506119
-
-
(c) Singleton, D. A.; Martínez, J. P.; Watson, J. V. Tetrahedron Lett. 1992, 33, 1017-1020.
-
(1992)
Tetrahedron Lett
, vol.33
, pp. 1017-1020
-
-
Singleton, D.A.1
Martínez, J.P.2
Watson, J.V.3
-
34
-
-
0026734887
-
-
(d) Singleton, D. A.; Martínez, J. P.; Watson, J. V.; Ndip, G. M. Tetrahedron 1992, 48, 5831-5838.
-
(1992)
Tetrahedron
, vol.48
, pp. 5831-5838
-
-
Singleton, D.A.1
Martínez, J.P.2
Watson, J.V.3
Ndip, G.M.4
-
36
-
-
0001211465
-
-
(f) Singleton, D. A.; Martinez, J. P.; Ndip, G. M. J. Org. Chem. 1992, 57, 5768-5771.
-
(1992)
J. Org. Chem
, vol.57
, pp. 5768-5771
-
-
Singleton, D.A.1
Martinez, J.P.2
Ndip, G.M.3
-
37
-
-
37049079826
-
-
(g) Noiret, N.; Youssofi, A.; Carboni, B.; Vaultier, M. J. Chem. Soc., Chem. Commun. 1992, 1105-1107.
-
(1992)
J. Chem. Soc., Chem. Commun
, pp. 1105-1107
-
-
Noiret, N.1
Youssofi, A.2
Carboni, B.3
Vaultier, M.4
-
38
-
-
0027287337
-
-
(h) Singleton, D. A.; Kim, K.; Martinez, J. P. Tetrahedron Lett. 1993, 34, 3071-3074.
-
(1993)
Tetrahedron Lett
, vol.34
, pp. 3071-3074
-
-
Singleton, D.A.1
Kim, K.2
Martinez, J.P.3
-
42
-
-
0030943222
-
-
(l) Singleton, D. A.; Leung, S.-W.; Martínez, J. P.; Lee, Y.-K. Tetrahedron Lett. 1997, 38, 3163-3166.
-
(1997)
Tetrahedron Lett
, vol.38
, pp. 3163-3166
-
-
Singleton, D.A.1
Leung, S.-W.2
Martínez, J.P.3
Lee, Y.-K.4
-
43
-
-
0030940360
-
-
(m) Batey, R. A.; Lin, D.; Wong, A.; Hayhoe, C. L. S. Tetrahedron Lett. 1997, 38, 3699-3702.
-
(1997)
Tetrahedron Lett
, vol.38
, pp. 3699-3702
-
-
Batey, R.A.1
Lin, D.2
Wong, A.3
Hayhoe, C.L.S.4
-
45
-
-
0040433921
-
-
(o) Zaidlewicz, M.; Binkul, J. R.; Sokol, W. J. Organomet. Chem. 1999, 580, 354-362.
-
(1999)
J. Organomet. Chem
, vol.580
, pp. 354-362
-
-
Zaidlewicz, M.1
Binkul, J.R.2
Sokol, W.3
-
47
-
-
4043087807
-
-
(b) Pellegrinet, S. C.; Silva, M. A.; Goodman, J. M. J. Comput.-Aided Mol. Des. 2004, 18, 209-214.
-
(2004)
J. Comput.-Aided Mol. Des
, vol.18
, pp. 209-214
-
-
Pellegrinet, S.C.1
Silva, M.A.2
Goodman, J.M.3
-
48
-
-
17744400504
-
-
(c) Pellegrinet, S. C.; Silva, M. A.; Goodman, J. M. Tetrahedron Lett. 2005, 46, 2461-2464.
-
(2005)
Tetrahedron Lett
, vol.46
, pp. 2461-2464
-
-
Pellegrinet, S.C.1
Silva, M.A.2
Goodman, J.M.3
-
52
-
-
0003120189
-
-
(d) Evans, D. A.; Scott, W. L.; Truesdale, L. K. Tetrahedron Lett. 1972, 2, 121-124.
-
(1972)
Tetrahedron Lett
, vol.2
, pp. 121-124
-
-
Evans, D.A.1
Scott, W.L.2
Truesdale, L.K.3
-
56
-
-
0033585522
-
-
(h) Avery, M. A.; Thadani, A. N.; Lough, A. J. J. Am. Chem. Soc. 1999, 121, 450-451.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 450-451
-
-
Avery, M.A.1
Thadani, A.N.2
Lough, A.J.3
-
58
-
-
33847611084
-
-
For a study on the inverse electron demand [4 + 2] cycloadditions of alkynylboronates see: Gomez-Bengoa, E.; Helm, M. D.; Plant, A.; Harrity, J. P. A. J. Am. Chem. Soc. 2007, 129, 2691-2699.
-
For a study on the inverse electron demand [4 + 2] cycloadditions of alkynylboronates see: Gomez-Bengoa, E.; Helm, M. D.; Plant, A.; Harrity, J. P. A. J. Am. Chem. Soc. 2007, 129, 2691-2699.
-
-
-
-
59
-
-
84962414037
-
-
We performed similar calculations to study the effect of substitution on the alkenylboronate using binaphthol instead of 3,3′-diodobiphenol (4b) as a model for 3,3′-diiodobinaphthol 4a, The computed reactivity for 2b and 2c was nearly the same and slightly lower than that for 2d, while the enantiomeric ratios were ca. 99:1 for 2b and 2d and 98:2 for 2c, so model 4b predicts ratios that are closer to those obtained experimentally. These results might suggest that binaphthol could be a better ligand for the conjugate addition of 1,2-disubstituted alkenylboronates
-
We performed similar calculations to study the effect of substitution on the alkenylboronate using binaphthol instead of 3,3′-diodobiphenol (4b) as a model for 3,3′-diiodobinaphthol (4a). The computed reactivity for 2b and 2c was nearly the same and slightly lower than that for 2d, while the enantiomeric ratios were ca. 99:1 for 2b and 2d and 98:2 for 2c, so model 4b predicts ratios that are closer to those obtained experimentally. These results might suggest that binaphthol could be a better ligand for the conjugate addition of 1,2-disubstituted alkenylboronates.
-
-
-
|