메뉴 건너뛰기




Volumn , Issue , 2015, Pages 289-297

On the non-trivial generalization of Dynamic Time Warping to the multi-dimensional case

Author keywords

Classification; Dynamic Time Warping

Indexed keywords

CLASSIFICATION (OF INFORMATION); TIME SERIES;

EID: 84961912432     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611974010.33     Document Type: Conference Paper
Times cited : (119)

References (19)
  • 1
    • 77952284752 scopus 로고    scopus 로고
    • Anticipatory DTW for efficient similarity search in time series databases
    • I. Assent, M. Wichterich, R. Krieger, H. Kremer, T. Seidl: Anticipatory DTW for Efficient Similarity Search in Time Series Databases. PVLDB 2(1): 826-837 (2009).
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 826-837
    • Assent, I.1    Wichterich, M.2    Krieger, R.3    Kremer, H.4    Seidl, T.5
  • 2
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB 1, 2, 1542-52
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.J.5
  • 4
    • 84894648193 scopus 로고    scopus 로고
    • Classification of multi-dimensional streaming time series by weighting each classifier's trackrecord
    • B. Hu, Y Chen, J Zakaria, L Ulanova, E. Keogh: Classification of Multi-dimensional Streaming Time Series by Weighting Each Classifier's TrackRecord. ICDM 2013: 281-290
    • (2013) ICDM , pp. 281-290
    • Hu, B.1    Chen, Y.2    Zakaria, J.3    Ulanova, L.4    Keogh, E.5
  • 6
    • 0242709395 scopus 로고    scopus 로고
    • On the need for Time Series Data Mining Benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty, On the need for Time Series Data Mining Benchmarks: a survey and empirical demonstration, Proc. ACM KDD 2002, pp 102-111
    • (2002) Proc. ACM KDD , pp. 102-111
    • Keogh, E.1    Kasetty, S.2
  • 12
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Kluwer Academic Publishers
    • J R Quinlan, (1986) Induction of Decision Trees. Machine Learning 1: 81-106, Kluwer Academic Publishers.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 14
    • 84866037385 scopus 로고    scopus 로고
    • Searching and mining trillions of time series subsequences under dynamic time warping
    • T. Rakthanmanon et al., "Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping, " SIGKDD 2012.
    • (2012) SIGKDD
    • Rakthanmanon, T.1
  • 15
    • 34548722676 scopus 로고    scopus 로고
    • Stream monitoring under the time warping distance
    • Y. Sakurai, C. Faloutsos, and M Yamamuro. 2007. Stream monitoring under the time warping distance ICDE, 1046-55
    • (2007) ICDE , pp. 1046-1055
    • Sakurai, Y.1    Faloutsos, C.2    Yamamuro, M.3
  • 16
    • 85009500921 scopus 로고    scopus 로고
    • Word recognition from continuous artictdatory movement time-series data using symbolic representations
    • Grenoble, France
    • J. Wang, A. et al. 2013. Word recognition from continuous artictdatory movement time-series data using symbolic representations, ACL/ISCA Interspeech Workshop, Grenoble, France, 119-127
    • (2013) ACL/ISCA Interspeech Workshop , pp. 119-127
    • Wang, A.J.1
  • 17
    • 84880104538 scopus 로고    scopus 로고
    • Time series shapelets:a new primitive for data mining
    • L. Ye and E. J. Keogh Time Series Shapelets:A New Primitive for Data Mining. KDD 2069.
    • KDD , vol.2069
    • Ye, L.1    Keogh, E.J.2
  • 19
    • 84871121341 scopus 로고    scopus 로고
    • Project webpage: https://sites.google.com/site/dtwAdaptive
    • Project Webpage


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.