-
1
-
-
84878256758
-
Optical properties of biological tissues: A review
-
S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
-
(2013)
Phys. Med. Biol.
, vol.58
, pp. R37-R61
-
-
Jacques, S.L.1
-
2
-
-
84879747395
-
Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes
-
L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 3185-3193
-
-
Tien, L.W.1
Wu, F.2
Tang-Schomer, M.D.3
Yoon, E.4
Omenetto, F.G.5
Kaplan, D.L.6
-
3
-
-
84888308591
-
Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies, Cancer Treat
-
D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
-
(2014)
Rev.
, vol.40
, pp. 229-241
-
-
Bechet, D.1
Mordon, S.R.2
Guillemin, F.3
Barberi-Heyob, M.A.4
-
4
-
-
84889084180
-
Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo
-
M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
-
(2013)
Nat. Photonics
, vol.7
, pp. 987-994
-
-
Choi, M.1
Choi, J.W.2
Kim, S.3
Nizamoglu, S.4
Hahn, S.K.5
Yun, S.H.6
-
5
-
-
84930531563
-
Step-Index Optical Fiber Made of Biocompatible Hydrogels
-
M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
-
(2015)
Adv. Mater.
, vol.27
, pp. 4081-4086
-
-
Choi, M.1
Humar, M.2
Kim, S.3
Yun, S.-H.4
-
6
-
-
79956358660
-
Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors
-
P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng., 58 1846–1854 (2011).
-
(2011)
IEEE T. Bio-Med. Eng.
, vol.58
, pp. 1846-1854
-
-
Valdastri, P.1
Susilo, E.2
Förster, T.3
Strohhöfer, C.4
Menciassi, A.5
Dario, P.6
-
7
-
-
77952299716
-
Biosensor based on hydrogel optical waveguide spectroscopy
-
Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy.” Biosens. Bioelectron. 25, 1663–1668 (2010).
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1663-1668
-
-
Wang, Y.1
Huang, C.-J.2
Jonas, U.3
Wei, T.4
Dostalek, J.5
Knoll, W.6
-
8
-
-
84862093028
-
Gel-based optical waveguides with live cell encapsulation and integrated microfluidics
-
A. Jain, A. H. J. Yang, and D. Erickson, “Gel-based optical waveguides with live cell encapsulation and integrated microfluidics.” Opt. Lett. 37, 1472–1474 (2012).
-
(2012)
Opt. Lett.
, vol.37
, pp. 1472-1474
-
-
Jain, A.1
Yang, A.H.J.2
Erickson, D.3
-
9
-
-
33847358246
-
Prospective for biodegradable microstructured optical fibers
-
A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers.” Opt. Lett. 32, 109–111 (2007).
-
(2007)
Opt. Lett.
, vol.32
, pp. 109-111
-
-
Dupuis, A.1
Guo, N.2
Gao, Y.3
Godbout, N.4
Lacroix, S.5
Dubois, C.6
Skorobogatiy, M.7
-
10
-
-
49649119949
-
Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers
-
L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.” Appl. Opt. 47, 3100–3108 (2008).
-
(2008)
Appl. Opt.
, vol.47
, pp. 3100-3108
-
-
Ding, L.1
Blackwell, R.I.2
Künzler, J.F.3
Knox, W.H.4
-
11
-
-
84880158904
-
Escherichia coli-Based Biophotonic Waveguides
-
H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides.” Nano Lett. 13, 3408–3413 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 3408-3413
-
-
Xin, H.1
Li, Y.2
Liu, X.3
Li, B.4
-
12
-
-
84861796590
-
Silk materials-a road to sustainable high technology
-
H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology.” Adv. Mater. 24, 2824–2837 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 2824-2837
-
-
Tao, H.1
Kaplan, D.L.2
Omenetto, F.G.3
-
14
-
-
84905506847
-
Highly Tunable Elastomeric Silk Biomaterials
-
B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 4615–4624 (2014).
-
(2014)
Adv. Funct. Mater.
, pp. 4615-4624
-
-
Partlow, B.P.1
Hanna, C.W.2
Rnjak-Kovacina, J.3
Moreau, J.E.4
Applegate, M.B.5
Burke, K.A.6
Marelli, B.7
Mitropoulos, A.N.8
Omenetto, F.G.9
Kaplan, D.L.10
-
15
-
-
8544278195
-
Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells
-
V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
-
(2004)
J. Biomed. Mater. Res. A.
, vol.71
, pp. 528-537
-
-
Karageorgiou, V.1
Meinel, L.2
Hofmann, S.3
Malhotra, A.4
Volloch, V.5
Kaplan, D.6
-
16
-
-
84865856340
-
Low-threshold blue lasing from silk fibroin thin films
-
S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
-
(2012)
Appl. Phys. Lett.
, vol.101
-
-
Toffanin, S.1
Kim, S.2
Cavallini, S.3
Natali, M.4
Benfenati, V.5
Amsden, J.J.6
Kaplan, D.L.7
Zamboni, R.8
Muccini, M.9
Omenetto, F.G.10
-
17
-
-
45049084300
-
In vivo degradation of three-dimensional silk fibroin scaffolds
-
Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
-
(2008)
Biomater
, vol.29
, pp. 3415-3428
-
-
Wang, Y.1
Rudym, D.2
Walsh, A.3
Abrahamsen, L.4
-
18
-
-
67649337255
-
Biocompatible Silk Printed Optical Waveguides
-
S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
-
(2009)
Adv. Mater.
, vol.21
, pp. 2411-2415
-
-
Parker, S.T.1
Domachuk, P.2
Amsden, J.3
Bressner, J.4
Lewis, J.A.5
Kaplan, D.L.6
Omenetto, F.G.7
-
19
-
-
80053387476
-
Materials fabrication from Bombyx mori silk fibroin
-
D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin.” Nat. Protoc. 6, 1612–1631 (2011).
-
(2011)
Nat. Protoc.
, vol.6
, pp. 1612-1631
-
-
Rockwood, D.N.1
Preda, R.C.2
Yücel, T.3
Wang, X.4
Lovett, M.L.5
Kaplan, D.L.6
-
20
-
-
79955877901
-
Regulation of silk material structure by temperature-controlled water vapor annealing
-
X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
-
(2011)
Biomacromolecules
, vol.12
, pp. 1686-1696
-
-
Hu, X.1
Shmelev, K.2
Sun, L.3
Gil, E.S.4
Park, S.H.5
Cebe, P.6
Kaplan, D.L.7
-
21
-
-
84961778884
-
-
Characterization of Optical Fibers (John Wiley & Sons, 2007)
-
Characterization of Optical Fibers (John Wiley & Sons, 2007).
-
-
-
-
22
-
-
0037010143
-
Polymer-Based Optical Waveguides: Materials, Processing, and Devices
-
B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
-
(2002)
Adv. Mater.
, vol.14
, pp. 1339-1365
-
-
Ma, B.H.1
Jen, A.K.2
Dalton, L.R.3
-
23
-
-
72349085213
-
Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study
-
O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol., 80, 1852–1888 (2009).
-
(2009)
J. Periodontol.
, vol.80
, pp. 1852-1888
-
-
Etienne, O.1
Schneider, A.2
Kluge, J.A.3
Bellemin-Laponnaz, C.4
Polidori, C.5
Leisk, G.G.6
Kaplan, D.L.7
Garlick, J.A.8
Egles, C.9
-
24
-
-
0025972934
-
Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study
-
W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study.” Arch. Surg.-Chicago 126, 318–324 (1991).
-
(1991)
Arch. Surg.-Chicago
, vol.126
, pp. 318-324
-
-
Sindelar, W.F.1
Delaney, T.F.2
Tochner, Z.3
Thomas, G.F.4
Dachoswki, L.J.5
Smith, P.D.6
Friauf, W.S.7
Cole, J.W.8
Glatstein, E.9
-
25
-
-
84880329711
-
Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: A randomized controlled trial with at least 5-year follow-up
-
M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
-
(2013)
J. Am. Acad. Dermatol.
, vol.69
, pp. 280-287
-
-
Roozeboom, M.H.1
Aardoom, M.A.2
Nelemans, P.J.3
Thissen, M.R.4
Kelleners-Smeets, N.W.5
Kuijpers, D.I.6
Mosterd, K.7
|