메뉴 건너뛰기




Volumn 16, Issue , 2015, Pages 2999-3034

Completing any low-rank matrix, provably

Author keywords

Coherence; Leverage score; Matrix completion; Nuclear norm; Weighted nuclear norm

Indexed keywords

COHERENT LIGHT; PROBABILITY DISTRIBUTIONS; RECOVERY;

EID: 84961755668     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (94)

References (33)
  • 1
    • 34247228045 scopus 로고    scopus 로고
    • Fast computation of low-rank matrix approximations
    • D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations. Journal of the ACM, 54(2):9, 2007.
    • (2007) Journal of the ACM , vol.54 , Issue.2 , pp. 9
    • Achlioptas, D.1    McSherry, F.2
  • 5
    • 84868355170 scopus 로고    scopus 로고
    • Weighted eigenfunction estimates with applications to compressed sensing
    • N. Burq, S. Dyatlov, R. Ward, and M. Zworski. Weighted eigenfunction estimates with applications to compressed sensing. SIAM Journal on Mathematical Analysis, 44(5):3481-3501, 2012.
    • (2012) SIAM Journal on Mathematical Analysis , vol.44 , Issue.5 , pp. 3481-3501
    • Burq, N.1    Dyatlov, S.2    Ward, R.3    Zworski, M.4
  • 6
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candès, E.2    Shen, Z.3
  • 7
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • E. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936, 2010.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.6 , pp. 925-936
    • Candès, E.1    Plan, Y.2
  • 9
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5):2053-2080, 2010.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candès, E.1    Tao, T.2
  • 12
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • S. Chatterjee and A. Hadi. Influential observations, high leverage points, and outliers in linear regression. Statistical Science, 1(3):379-393, 1986.
    • (1986) Statistical Science , vol.1 , Issue.3 , pp. 379-393
    • Chatterjee, S.1    Hadi, A.2
  • 13
    • 84928546844 scopus 로고    scopus 로고
    • Incoherence-optimal matrix completion
    • Y. Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information Theory, 61(5):2909-2923, 2015.
    • (2015) IEEE Transactions on Information Theory , vol.61 , Issue.5 , pp. 2909-2923
    • Chen, Y.1
  • 15
    • 78651554345 scopus 로고    scopus 로고
    • A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality
    • P. Drineas and A. Zouzias. A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality. Information Processing Letters, 111(8):385-389, 2011.
    • (2011) Information Processing Letters , vol.111 , Issue.8 , pp. 385-389
    • Drineas, P.1    Zouzias, A.2
  • 19
    • 79951886985 scopus 로고    scopus 로고
    • Recovering low-rank matrices from few coefficients in any basis
    • D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information Theory, 57(3):1548-1566, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.3 , pp. 1548-1566
    • Gross, D.1
  • 22
    • 84891808424 scopus 로고    scopus 로고
    • Stable and robust sampling strategies for compressive imaging
    • F. Krahmer and R. Ward. Stable and robust sampling strategies for compressive imaging. IEEE Transactions on Image Processing, 23(2):612-622, 2014.
    • (2014) IEEE Transactions on Image Processing , vol.23 , Issue.2 , pp. 612-622
    • Krahmer, F.1    Ward, R.2
  • 26
  • 27
    • 84862020232 scopus 로고    scopus 로고
    • Restricted strong convexity and weighted matrix completion: Optimal bounds with noise
    • S. Negahban and M. Wainwright. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. Journal of Machine Learning Research, 13:1665-1697, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 1665-1697
    • Negahban, S.1    Wainwright, M.2
  • 29
    • 84856009825 scopus 로고    scopus 로고
    • A simpler approach to matrix completion
    • B. Recht. A simpler approach to matrix completion. Journal of Machine Learning Research, 12:3413-3430, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 3413-3430
    • Recht, B.1
  • 30
    • 84855597147 scopus 로고    scopus 로고
    • Graph sparsification by effective resistances
    • D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913-1926, 2011.
    • (2011) SIAM Journal on Computing , vol.40 , Issue.6 , pp. 1913-1926
    • Spielman, D.1    Srivastava, N.2
  • 31
    • 85161986396 scopus 로고    scopus 로고
    • Collaborative filtering in a non-uniform world: Learning with the weighted trace norm
    • N. Srebro and R. Salakhutdinov. Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In Advances in Neural Information Processing Systems, pages 2056-2064, 2010.
    • (2010) Advances in Neural Information Processing Systems , pp. 2056-2064
    • Srebro, N.1    Salakhutdinov, R.2
  • 32
    • 84864315555 scopus 로고    scopus 로고
    • User-friendly tail bounds for sums of random matrices
    • J. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.
    • (2012) Foundations of Computational Mathematics , vol.12 , Issue.4 , pp. 389-434
    • Tropp, J.1
  • 33
    • 84877881686 scopus 로고    scopus 로고
    • Reweighted h minimization method for stochastic elliptic differential equations
    • X. Yang and G. Karniadakis. Reweighted h minimization method for stochastic elliptic differential equations. Journal of Computational Physics, 248:87-108, 2013.
    • (2013) Journal of Computational Physics , vol.248 , pp. 87-108
    • Yang, X.1    Karniadakis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.