메뉴 건너뛰기




Volumn 55, Issue 3, 2016, Pages 579-594

Full access evaluating the sensitivity of agricultural model performance to different climate inputs

Author keywords

Agriculture; Bias; Crop growth; Data processing

Indexed keywords

AGRICULTURE; ARTIFICIAL INTELLIGENCE; CROPS; DATA HANDLING; DATA PROCESSING; DECISION SUPPORT SYSTEMS;

EID: 84961680191     PISSN: 15588424     EISSN: 15588432     Source Type: Journal    
DOI: 10.1175/JAMC-D-15-0120.1     Document Type: Article
Times cited : (17)

References (53)
  • 1
    • 84883377040 scopus 로고    scopus 로고
    • Uncertainty in simulating wheat yields under climate change
    • Asseng, S., and Coauthors, 2013: Uncertainty in simulating wheat yields under climate change. Nat. Climate Change, 3, 827-832, doi:10.1038/nclimate1916
    • (2013) Nat. Climate Change , vol.3 , pp. 827-832
    • Asseng, S.1
  • 2
    • 84923030568 scopus 로고    scopus 로고
    • Rising temperatures reduce global wheat production
    • Asseng, S., and Coauthors, 2015: Rising temperatures reduce global wheat production. Nat. Climate Change, 5, 143-147, doi:10.1038/nclimate2470
    • (2015) Nat. Climate Change , vol.5 , pp. 143-147
    • Asseng, S.1
  • 3
    • 84901927473 scopus 로고    scopus 로고
    • How do various maize crop models vary in their responses to climate change factors?
    • Bassu, S., and Coauthors, 2014: How do various maize crop models vary in their responses to climate change factors? Global Change Biol., 20, 2301-2320, doi:10.1111/gcb.12520
    • (2014) Global Change Biol , vol.20 , pp. 2301-2320
    • Bassu, S.1
  • 4
    • 77949306803 scopus 로고    scopus 로고
    • What are the dominant features of rainfall leading to realistic large-scale crop yield simulations in West Africa?
    • Berg, A., B. Sultan, and N. de Noblet-Ducoudré, 2010: What are the dominant features of rainfall leading to realistic large-scale crop yield simulations in West Africa? Geophys. Res. Lett., 37, L05405, doi:10.1029/2009GL041923
    • (2010) Geophys. Res. Lett , vol.37
    • Berg, A.1    Sultan, B.2    de Noblet-Ducoudré, N.3
  • 5
    • 77952730474 scopus 로고    scopus 로고
    • A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP)
    • Bosilovich, M. G., D. Mocko, J. O. Roads, and A. Ruane, 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912-934, doi:10.1175/2009JHM1090.1
    • (2009) J. Hydrometeor , vol.10 , pp. 912-934
    • Bosilovich, M.G.1    Mocko, D.2    Roads, J.O.3    Ruane, A.4
  • 6
    • 18544367774 scopus 로고    scopus 로고
    • Simulation of crop yields using ERA-40: Limits to skill and nonstationarity in weather-yield relationships
    • Challinor, A., T. Wheeler, J. Slingo, P. Craufurd, and D. Grimes, 2005: Simulation of crop yields using ERA-40: Limits to skill and nonstationarity in weather-yield relationships. J. Appl. Meteor., 44, 516-531, doi:10.1175/JAM2212.1
    • (2005) J. Appl. Meteor , vol.44 , pp. 516-531
    • Challinor, A.1    Wheeler, T.2    Slingo, J.3    Craufurd, P.4    Grimes, D.5
  • 7
    • 0000791134 scopus 로고
    • An operational objective analysis system
    • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    • (1959) Mon. Wea. Rev , vol.87 , pp. 367-374
    • Cressman, G.P.1
  • 8
    • 78650350276 scopus 로고    scopus 로고
    • Using ERA-INTERIM for regional crop yield forecasting in Europe
    • de Wit, A., and Coauthors, 2010: Using ERA-INTERIM for regional crop yield forecasting in Europe. Climate Res., 44, 41-53, doi:10.3354/cr00872
    • (2010) Climate Res , vol.44 , pp. 41-53
    • de Wit, A.1
  • 9
    • 84878106966 scopus 로고    scopus 로고
    • HadISD: A quality controlled global synoptic report database for selected variables at long-term stations from 1973-2011
    • Dunn, R. J. H., K. M. Willett, P. W. Thorne, E. V. Woolley, I. Durre, A. Dai, D. E. Parker, and R. E. Vose, 2012: HadISD: A quality controlled global synoptic report database for selected variables at long-term stations from 1973-2011. Climate Past, 8, 1649-1679, doi:10.5194/cp-8-1649-2012
    • (2012) Climate Past , vol.8 , pp. 1649-1679
    • Dunn, R.J.H.1    Willett, K.M.2    Thorne, P.W.3    Woolley, E.V.4    Durre, I.5    Dai, A.6    Parker, D.E.7    Vose, R.E.8
  • 12
    • 84922880013 scopus 로고    scopus 로고
    • The Global Gridded Crop Model Intercomparison (GGCMI): Data and modeling protocol for phase 1 (v1.0)
    • Elliott, J., and Coauthors, 2015: The Global Gridded Crop Model Intercomparison (GGCMI): Data and modeling protocol for phase 1 (v1.0). Geosci. Model Dev., 8, 261-277, doi:10.5194/gmd-8-261-2015
    • (2015) Geosci. Model Dev , vol.8 , pp. 261-277
    • Elliott, J.1
  • 14
    • 57649218797 scopus 로고    scopus 로고
    • Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets
    • Ensor, L. A., and S. M. Robeson, 2008: Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets. J. Appl. Meteor. Climatol., 47, 2468-2476, doi:10.1175/2008JAMC1757.1
    • (2008) J. Appl. Meteor. Climatol , vol.47 , pp. 2468-2476
    • Ensor, L.A.1    Robeson, S.M.2
  • 17
    • 84896707401 scopus 로고    scopus 로고
    • Updated highresolution grids of monthly climatic observations-The CRU TS3.10 dataset
    • Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated highresolution grids of monthly climatic observations-The CRU TS3.10 dataset. Int. J. Climatol., 34, 623-642, doi:10.1002/joc.3711
    • (2014) Int. J. Climatol , vol.34 , pp. 623-642
    • Harris, I.1    Jones, P.2    Osborn, T.3    Lister, D.4
  • 19
    • 77958102443 scopus 로고    scopus 로고
    • Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products
    • Higgins, R., V. Kousky, V. Silva, E. Becker, and P. Xie, 2010: Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products. J. Climate, 23, 4637-4650, doi:10.1175/2010JCLI3638.1
    • (2010) J. Climate , vol.23 , pp. 4637-4650
    • Higgins, R.1    Kousky, V.2    Silva, V.3    Becker, E.4    Xie, P.5
  • 20
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176-1190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
    • (1997) J. Appl. Meteor , vol.36 , pp. 1176-1190
    • Hsu, K.-L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 21
    • 33947356755 scopus 로고    scopus 로고
    • The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
    • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1
    • (2007) J. Hydrometeor , vol.8 , pp. 38-55
    • Huffman, G.J.1
  • 23
    • 0037236631 scopus 로고    scopus 로고
    • The DSSAT cropping system model
    • Jones, J., and Coauthors, 2003: The DSSAT cropping system model. Eur. J. Agron., 18 (3-4), 235-265, doi:10.1016/S1161-0301(02)00107-7
    • (2003) Eur. J. Agron , vol.18 , Issue.3-4 , pp. 235-265
    • Jones, J.1
  • 24
    • 2442514138 scopus 로고    scopus 로고
    • CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution
    • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487-503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
    • (2004) J. Hydrometeor , vol.5 , pp. 487-503
    • Joyce, R.J.1    Janowiak, J.E.2    Arkin, P.A.3    Xie, P.4
  • 25
    • 84872892535 scopus 로고    scopus 로고
    • Errors in climate datasets and their effects on statistical crop models
    • Lobell, D. B., 2013: Errors in climate datasets and their effects on statistical crop models. Agric. For. Meteor., 170, 58-66, doi:10.1016/j.agrformet.2012.05.013
    • (2013) Agric. For. Meteor , vol.170 , pp. 58-66
    • Lobell, D.B.1
  • 26
    • 84900320552 scopus 로고    scopus 로고
    • Greater sensitivity to drought accompanies maize yield increase in the US Midwest
    • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014: Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science, 344, 516-519, doi:10.1126/science.1251423
    • (2014) Science , vol.344 , pp. 516-519
    • Lobell, D.B.1    Roberts, M.J.2    Schlenker, W.3    Braun, N.4    Little, B.B.5    Rejesus, R.M.6    Hammer, G.L.7
  • 27
    • 84961629064 scopus 로고    scopus 로고
    • The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and protocols
    • C. Rosenzweig and D. Hillel, Eds., ICP Series on Climate Change Impacts, Adaptation, and Mitigation, World Scientific
    • McDermid, S., and Coauthors, 2015: The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and protocols. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, C. Rosenzweig and D. Hillel, Eds., ICP Series on Climate Change Impacts, Adaptation, and Mitigation, Vol. 3, World Scientific, 191-220, doi:10.1142/9781783265640_0008
    • (2015) Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments , vol.3 , pp. 191-220
    • McDermid, S.1
  • 28
    • 79955043168 scopus 로고    scopus 로고
    • Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS
    • Mo, K. C., L. N. Long, Y. Xia, S. Yang, J. E. Schemm, and M. Ek, 2011: Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. J. Hydrometeor., 12, 181-205, doi:10.1175/2010JHM1310.1
    • (2011) J. Hydrometeor , vol.12 , pp. 181-205
    • Mo, K.C.1    Long, L.N.2    Xia, Y.3    Yang, S.4    Schemm, J.E.5    Ek, M.6
  • 29
    • 70949094235 scopus 로고    scopus 로고
    • FAO and IIASA
    • Nachtergaele, F., and Coauthors, 2009: Harmonized World Soil Database (version 1.1). FAO and IIASA, 43 pp. [Available online at http://www.fao.org/fileadmin/templates/nr/documents/HWSD/HWSD_Documentation.pdf.]
    • (2009) Harmonized World Soil Database (version 1.1) , pp. 43
    • Nachtergaele, F.1
  • 30
    • 84892885506 scopus 로고    scopus 로고
    • Agriculture and climate change in global scenarios: Why don't the models agree
    • Nelson, G. C., and Coauthors, 2014: Agriculture and climate change in global scenarios: Why don't the models agree. Agric. Econ., 45, 85-101, doi:10.1111/agec.12091
    • (2014) Agric. Econ , vol.45 , pp. 85-101
    • Nelson, G.C.1
  • 32
    • 0003484104 scopus 로고    scopus 로고
    • University of Minnesota Extension Service, NCR Publ. 602
    • Ostlie, K., W. Hutchison, and R. Hellmich, Eds., 1997: Bt corn and European corn borer. University of Minnesota Extension Service, NCR Publ. 602, 20 pp. [Available online at http://www.extension.umn.edu/agriculture/corn/pest-management/bt-corn-and-european-corn-borer/.]
    • (1997) Bt corn and European corn borer , pp. 20
    • Ostlie, K.1    Hutchison, W.2    Hellmich, R.3
  • 35
    • 11144356588 scopus 로고    scopus 로고
    • The Global Land Data Assimilation System
    • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381-394, doi:10.1175/BAMS-85-3-381
    • (2004) Bull. Amer. Meteor. Soc , vol.85 , pp. 381-394
    • Rodell, M.1
  • 36
    • 0036800857 scopus 로고    scopus 로고
    • Increased crop damage in the US from excess precipitation under climate change
    • Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change, 12, 197-202, doi:10.1016/S0959-3780(02)00008-0
    • (2002) Global Environ. Change , vol.12 , pp. 197-202
    • Rosenzweig, C.1    Tubiello, F.N.2    Goldberg, R.3    Mills, E.4    Bloomfield, J.5
  • 37
    • 84872945036 scopus 로고    scopus 로고
    • The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies
    • Rosenzweig, C., and Coauthors, 2013: The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteor., 170, 166-182, doi:10.1016/j.agrformet.2012.09.011
    • (2013) Agric. For. Meteor , vol.170 , pp. 166-182
    • Rosenzweig, C.1
  • 38
    • 84908516700 scopus 로고    scopus 로고
    • Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation
    • Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos, 2014a: Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteor., 200, 233-248, doi:10.1016/j.agrformet.2014.09.016
    • (2014) Agric. For. Meteor , vol.200 , pp. 233-248
    • Ruane, A.C.1    Goldberg, R.2    Chryssanthacopoulos, J.3
  • 39
    • 84891662308 scopus 로고    scopus 로고
    • Carbon-temperature-water change analysis for peanut production under climate change: A prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)
    • Ruane, A. C., S. McDermid, C. Rosenzweig, G. A. Baigorria, J. W. Jones, C. C. Romero, and L. DeWayne Cecil, 2014b: Carbon-temperature-water change analysis for peanut production under climate change: A prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). Global Change Biol., 20, 394-407, doi:10.1111/gcb.12412
    • (2014) Global Change Biol , vol.20 , pp. 394-407
    • Ruane, A.C.1    McDermid, S.2    Rosenzweig, C.3    Baigorria, G.A.4    Jones, J.W.5    Romero, C.C.6    DeWayne Cecil, L.7
  • 40
    • 77956572998 scopus 로고    scopus 로고
    • The NCEP Climate Forecast System Reanalysis
    • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057, doi:10.1175/2010BAMS3001.1
    • (2010) Bull. Amer. Meteor. Soc , vol.91 , pp. 1015-1057
    • Saha, S.1
  • 41
    • 84882301084 scopus 로고    scopus 로고
    • GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data
    • accessed 31 May 2012
    • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 31 May 2012, doi:10.5676/DWD_GPCC/FD_M_V6_050
    • (2011) Global Precipitation Climatology Centre
    • Schneider, U.1    Becker, A.2    Finger, P.3    Meyer-Christoffer, A.4    Rudolf, B.5    Ziese, M.6
  • 43
    • 84961629008 scopus 로고    scopus 로고
    • U.S. Department of Agriculture, National Agricultural Statistics Service, NASS Staff Rep.
    • Statistical Methods Branch, 2012: The yield forecasting program of NASS. U.S. Department of Agriculture, National Agricultural Statistics Service, NASS Staff Rep. SMB 12-01, 104 pp. [Available online at http://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Advanced_Topics/Yield%20Forecasting%20Program%20of%20NASS.pdf.]
    • (2012) The yield forecasting program of NASS , pp. 104
    • Branch, S.M.1
  • 45
    • 84887482840 scopus 로고    scopus 로고
    • Impact of derived global weather data on simulated crop yields
    • van Wart, J., P. Grassini, and K. G. Cassman, 2013: Impact of derived global weather data on simulated crop yields. Global Change Biol., 19, 3822-3834, doi:10.1111/gcb.12302
    • (2013) Global Change Biol , vol.19 , pp. 3822-3834
    • van Wart, J.1    Grassini, P.2    Cassman, K.G.3
  • 46
    • 80052756110 scopus 로고    scopus 로고
    • An assessment of the surface climate in the NCEP climate forecast system reanalysis
    • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37 (7-8), 1601-1620, doi:10.1007/s00382-010-0935-7
    • (2011) Climate Dyn , vol.37 , Issue.7-8 , pp. 1601-1620
    • Wang, W.1    Xie, P.2    Yoo, S.-H.3    Xue, Y.4    Kumar, A.5    Wu, X.6
  • 47
    • 84872929116 scopus 로고    scopus 로고
    • The relative importance of rainfall, temperature and yield data for a regional-scale cropmodel
    • Watson, J., and A. Challinor, 2013: The relative importance of rainfall, temperature and yield data for a regional-scale cropmodel. Agric. For. Meteor., 170, 47-57, doi:10.1016/j.agrformet.2012.08.001
    • (2013) Agric. For. Meteor , vol.170 , pp. 47-57
    • Watson, J.1    Challinor, A.2
  • 48
    • 79960687094 scopus 로고    scopus 로고
    • Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States
    • White, J., G. Hoogenboom, P. Stackhouse, P. Wilkens, and J. Hoel, 2011: Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agron. J., 103, 1242-1251, doi:10.2134/agronj2011.0038
    • (2011) Agron. J , vol.103 , pp. 1242-1251
    • White, J.1    Hoogenboom, G.2    Stackhouse, P.3    Wilkens, P.4    Hoel, J.5
  • 49
    • 0029537930 scopus 로고
    • Smart interpolation of annually averaged air temperature in the United States
    • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 2577-2586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2
    • (1995) J. Appl. Meteor , vol.34 , pp. 2577-2586
    • Willmott, C.J.1    Matsuura, K.2
  • 50
    • 84856976659 scopus 로고    scopus 로고
    • Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products
    • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048
    • (2012) J. Geophys. Res , vol.117
    • Xia, Y.1
  • 52
    • 84925759710 scopus 로고    scopus 로고
    • version 3, release 2. International Food Policy Research Institute
    • You, L., and Coauthors, 2010: Spatial Production Allocation Model (SPAM), version 3, release 2. International Food Policy Research Institute. [Available online at http://MapSPAM.info.]
    • (2010) Spatial Production Allocation Model (SPAM)
    • You, L.1
  • 53
    • 42449163370 scopus 로고    scopus 로고
    • Swift: Fast, reliable, loosely coupled parallel computation
    • Salt Lake City, UT, IEEE
    • Zhao, Y., and Coauthors, 2007: Swift: Fast, reliable, loosely coupled parallel computation. Proc. 2007 IEEE Congress on Services, Salt Lake City, UT, IEEE, 199-206
    • (2007) Proc. 2007 IEEE Congress on Services , pp. 199-206
    • Zhao, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.