메뉴 건너뛰기




Volumn 20, Issue 2, 2016, Pages

Optimal in situ bioremediation design of groundwater contaminated with dissolved petroleum hydrocarbons

Author keywords

Groundwater; In situ bioremediation; Multiobjective; Sensitivity analysis; Sum of squared cleanup standard violations

Indexed keywords

AQUIFERS; BIOREMEDIATION; BIOTECHNOLOGY; COST EFFECTIVENESS; COSTS; GENETIC ALGORITHMS; GROUNDWATER; GROUNDWATER RESOURCES; HYDRAULIC CONDUCTIVITY; HYDROCARBONS; HYDROGEOLOGY; MULTIOBJECTIVE OPTIMIZATION; OXYGEN; PETROLEUM CHEMISTRY; POTABLE WATER; QUALITY CONTROL; SENSITIVITY ANALYSIS; WATER SUPPLY; WATER TREATMENT;

EID: 84961172548     PISSN: 21535493     EISSN: 21535515     Source Type: Journal    
DOI: 10.1061/(ASCE)HZ.2153-5515.0000304.     Document Type: Article
Times cited : (12)

References (39)
  • 1
    • 0032840214 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems.
    • Aly, A. H., and Peralta, R. C. (1999). "Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems." Water Resour. Res., 35(8), 2415-2425.
    • (1999) Water Resour. Res. , vol.35 , Issue.8 , pp. 2415-2425
    • Aly, A.H.1    Peralta, R.C.2
  • 2
    • 84945278648 scopus 로고    scopus 로고
    • Evaluation of climatic-change impacts on multiobjective reservoir operation with multiobjective genetic programming.
    • Ashofteh, P. S., Bozorg Haddad, O., and Loaiciga, H. A. (2015a). "Evaluation of climatic-change impacts on multiobjective reservoir operation with multiobjective genetic programming." J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000540, 04015030.
    • (2015) J. Water Resour. Plann. Manage.
    • Ashofteh, P.S.1    Bozorg Haddad, O.2    Loaiciga, H.A.3
  • 3
    • 84988259258 scopus 로고    scopus 로고
    • Determination of irrigation allocation policy under climate change by genetic programming.
    • Ashofteh, P.-S., Bozorg Haddad, O., Akbari-Alashti, H., and Mariño, M. A. (2015b). "Determination of irrigation allocation policy under climate change by genetic programming." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000807, 04014059.
    • (2015) J. Irrig. Drain. Eng.
    • Ashofteh, P.-S.1    Bozorg Haddad, O.2    Akbari-Alashti, H.3    Mariño, M.A.4
  • 4
    • 84871405414 scopus 로고    scopus 로고
    • Scenario assessment of streamflow simulation and its transition probability in future periods under climate change.
    • Ashofteh, P.-S., Bozorg Haddad, O., and Mariño, M. A. (2013a). "Scenario assessment of streamflow simulation and its transition probability in future periods under climate change." Water Resour. Manage., 27(1), 255-274.
    • (2013) Water Resour. Manage. , vol.27 , Issue.1 , pp. 255-274
    • Ashofteh, P.-S.1    Bozorg Haddad, O.2    Mariño, M.A.3
  • 5
    • 84925306206 scopus 로고    scopus 로고
    • Risk analysis of water demand for agricultural crops under climate change.
    • Ashofteh, P.-S., Bozorg Haddad, O., and Mariño, M. A. (2015c). "Risk analysis of water demand for agricultural crops under climate change." J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0001053, 04014060.
    • (2015) J. Hydrol. Eng.
    • Ashofteh, P.-S.1    Bozorg Haddad, O.2    Mariño, M.A.3
  • 6
    • 84879518523 scopus 로고    scopus 로고
    • Climate change impact on reservoir performance indices in agricultural water supply.
    • Ashofteh, P.-S., Bozorg-Haddad, O., and Mariño, M. (2013b). "Climate change impact on reservoir performance indices in agricultural water supply." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000496, 85-97.
    • (2013) J. Irrig. Drain. Eng. , pp. 85-97
    • Ashofteh, P.-S.1    Bozorg-Haddad, O.2    Mariño, M.3
  • 8
    • 0022900916 scopus 로고
    • Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 1. Theoretical development.
    • Borden, R. C., and Bedient, P. B. (1986). "Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 1. Theoretical development." Water Resour. Res., 22(13), 1973-1982.
    • (1986) Water Resour. Res. , vol.22 , Issue.13 , pp. 1973-1982
    • Borden, R.C.1    Bedient, P.B.2
  • 9
    • 85032069433 scopus 로고    scopus 로고
    • Investigation of reservoir qualitative behavior resulting from biological pollutant sudden entry.
    • Bozorg Haddad, O., Ashofteh, P.-S., Ali-Hamzeh, M., and Mariño, M. A. (2015a). "Investigation of reservoir qualitative behavior resulting from biological pollutant sudden entry." J. Irrig. Drain. Eng., 10.1061/ (ASCE)IR.1943-4774.0000865, 04015003.
    • (2015) J. Irrig. Drain. Eng.
    • Bozorg Haddad, O.1    Ashofteh, P.-S.2    Ali-Hamzeh, M.3    Mariño, M.A.4
  • 10
    • 84997335250 scopus 로고    scopus 로고
    • Levee's layout and design optimization in protection of flood areas.
    • Bozorg Haddad, O., Ashofteh, P.-S., and Mariño, M. A. (2015b). "Levee's layout and design optimization in protection of flood areas." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000864, 04015004.
    • (2015) J. Irrig. Drain. Eng.
    • Bozorg Haddad, O.1    Ashofteh, P.-S.2    Mariño, M.A.3
  • 13
    • 0036530772 scopus 로고    scopus 로고
    • Fast and elitist multiobjective genetic algorithm: NSGA-II.
    • Deb, K., Partap, A., Agarwal, S., and Meyarivan, T. (2002). "Fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE Trans. Evol. Comput., 6(2), 182-197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Partap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 14
    • 0036145232 scopus 로고    scopus 로고
    • Multi-objective optimal design of groundwater remediation systems: Application of the niched Pareto genetic algorithm (NPGA).
    • Erickson, M., Mayer, A., and Horn, J. (2002). "Multi-objective optimal design of groundwater remediation systems: Application of the niched Pareto genetic algorithm (NPGA)." Adv. Water Resour., 25(1), 51-65.
    • (2002) Adv. Water Resour. , vol.25 , Issue.1 , pp. 51-65
    • Erickson, M.1    Mayer, A.2    Horn, J.3
  • 15
    • 0018313891 scopus 로고
    • Prentice Hall, Englewood Cliffs, NJ
    • Freeze, R. A., and Cherry, R. B. (1979). Groundwater, Prentice Hall, Englewood Cliffs, NJ, 604.
    • (1979) Groundwater , pp. 604
    • Freeze, R.A.1    Cherry, R.B.2
  • 16
    • 0033575753 scopus 로고    scopus 로고
    • Optimal remediation with well locations and pumping rates selected as continuous decision variables.
    • Guan, J., and Aral, M. M. (1999). "Optimal remediation with well locations and pumping rates selected as continuous decision variables." J. Hydrol., 221(1-2), 20-42.
    • (1999) J. Hydrol. , vol.221 , Issue.1-2 , pp. 20-42
    • Guan, J.1    Aral, M.M.2
  • 17
    • 11844296189 scopus 로고    scopus 로고
    • Groundwater remediation design under uncertainty using genetic algorithms.
    • Hilton, A. B. C., and Culver, T. B. (2005). "Groundwater remediation design under uncertainty using genetic algorithms." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2005)131:1(25), 25-34.
    • (2005) J. Water Resour. Plann. Manage. , pp. 25-34
    • Hilton, A.B.C.1    Culver, T.B.2
  • 19
    • 0027086378 scopus 로고
    • Design of optimal pump-and-treat strategies for contaminated groundwater remediation using the simulated annealing algorithm.
    • Kuo, C. H., Michel, A. N., and Gray, W. G. (1992). "Design of optimal pump-and-treat strategies for contaminated groundwater remediation using the simulated annealing algorithm." Adv. Water Resour., 15(2), 95-105.
    • (1992) Adv. Water Resour. , vol.15 , Issue.2 , pp. 95-105
    • Kuo, C.H.1    Michel, A.N.2    Gray, W.G.3
  • 20
    • 1642497520 scopus 로고    scopus 로고
    • Full multi-scale approach for optimal control of in situ bioremediation.
    • Liu, Y., and Minsker, B. S. (2004). "Full multi-scale approach for optimal control of in situ bioremediation." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2004)130:1(26), 26-32.
    • (2004) J. Water Resour. Plann. Manage. , pp. 26-32
    • Liu, Y.1    Minsker, B.S.2
  • 21
    • 84876830119 scopus 로고    scopus 로고
    • Simulation-optimization model for in situ bioremediation of groundwater contamination using meshfree PCM and PSO.
    • Mategaonkar, M., and Eldho, T. I. (2012). "Simulation-optimization model for in situ bioremediation of groundwater contamination using meshfree PCM and PSO." J. Hazard. Toxic Radioact. Waste, 10.1061/(ASCE)HZ.2153-5515.0000126, 207-218.
    • (2012) J. Hazard. Toxic Radioact. Waste , pp. 207-218
    • Mategaonkar, M.1    Eldho, T.I.2
  • 23
    • 0345602278 scopus 로고    scopus 로고
    • Computational issues for optimal in-situ bioremediation design.
    • Minsker, B. S., and Shoemaker, C. A. (1998a). "Computational issues for optimal in-situ bioremediation design." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(1998)124:1(39), 0039-0046.
    • (1998) J. Water Resour. Plann. Manage. , pp. 0039-0046
    • Minsker, B.S.1    Shoemaker, C.A.2
  • 24
    • 0032080270 scopus 로고    scopus 로고
    • Dynamic optimal control of in-situ bioremediation of groundwater.
    • Minsker, B. S., and Shoemaker, C. A. (1998b). "Dynamic optimal control of in-situ bioremediation of groundwater." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(1998)124:3(149), 149-161.
    • (1998) J. Water Resour. Plann. Manage. , pp. 149-161
    • Minsker, B.S.1    Shoemaker, C.A.2
  • 25
    • 77954017735 scopus 로고    scopus 로고
    • Multi-objective groundwater remediation system design using coupled finite-element model and nondominated sorting genetic algorithm II.
    • Mondal, A., Eldho, T. I., and Rao, V. V. S. G. (2010). "Multi-objective groundwater remediation system design using coupled finite-element model and nondominated sorting genetic algorithm II." J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0000198, 350-359.
    • (2010) J. Hydrol. Eng. , pp. 350-359
    • Mondal, A.1    Eldho, T.I.2    Rao, V.V.S.G.3
  • 26
    • 0033237191 scopus 로고    scopus 로고
    • A stochastic optimization approach in the design of an aquifer remediation under hydrogeologic uncertainty.
    • Mylopoulos, Y. A., Theodosiou, N., and Mylopoulos, N. A. (1999). "A stochastic optimization approach in the design of an aquifer remediation under hydrogeologic uncertainty." Water Resour. Manage., 13(5), 335-351.
    • (1999) Water Resour. Manage. , vol.13 , Issue.5 , pp. 335-351
    • Mylopoulos, Y.A.1    Theodosiou, N.2    Mylopoulos, N.A.3
  • 27
    • 80051601934 scopus 로고    scopus 로고
    • Economic parameters' effects in the optimal design of a groundwater remediation system.
    • Papadopoulou, M. P., Karatzas, G. P., and Pinder, G. F. (2004). "Economic parameters' effects in the optimal design of a groundwater remediation system." Dev. Water Sci., 55(2), 1181-1191.
    • (2004) Dev. Water Sci. , vol.55 , Issue.2 , pp. 1181-1191
    • Papadopoulou, M.P.1    Karatzas, G.P.2    Pinder, G.F.3
  • 28
    • 52649101979 scopus 로고    scopus 로고
    • Potential well locations in in situ bioremediation design using neural network embedded Monte Carlo approach.
    • Prasad, R. K., and Mathur, S. (2008). "Potential well locations in in situ bioremediation design using neural network embedded Monte Carlo approach." Pract. Period. Hazard. Toxic Radioact. Waste Manage., 10.1061/(ASCE)1090-025X(2008)12:4(260), 260-269.
    • (2008) Pract. Period. Hazard. Toxic Radioact. Waste Manage. , pp. 260-269
    • Prasad, R.K.1    Mathur, S.2
  • 29
    • 27544486409 scopus 로고    scopus 로고
    • Which groundwater remediation objective is better: A realistic one or a simple one?
    • Ren, X., and Minsker, B. (2005). "Which groundwater remediation objective is better: A realistic one or a simple one?" J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2005)131:5(351), 351-361.
    • (2005) J. Water Resour. Plann. Manage. , pp. 351-361
    • Ren, X.1    Minsker, B.2
  • 30
    • 0025591049 scopus 로고
    • Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater.
    • Rifai, H. S., and Bedient, P. B. (1990). "Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater." Water Resour. Res., 26(4), 637-645.
    • (1990) Water Resour. Res. , vol.26 , Issue.4 , pp. 637-645
    • Rifai, H.S.1    Bedient, P.B.2
  • 31
    • 11844250090 scopus 로고    scopus 로고
    • Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing.
    • Shieh, H. J., and Peralta, R. C. (2005). "Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2005)131:1(67), 67-78.
    • (2005) J. Water Resour. Plann. Manage. , pp. 67-78
    • Shieh, H.J.1    Peralta, R.C.2
  • 32
    • 84876424983 scopus 로고    scopus 로고
    • Algorithm for increasing the speed of evolutionary optimization and its accuracy in multi-objective problems.
    • Shokri, A., Bozorg Haddad, O., and Mariño, M. A. (2013). "Algorithm for increasing the speed of evolutionary optimization and its accuracy in multi-objective problems." Water Resour. Manage., 27(7), 2231-2249.
    • (2013) Water Resour. Manage. , vol.27 , Issue.7 , pp. 2231-2249
    • Shokri, A.1    Bozorg Haddad, O.2    Mariño, M.A.3
  • 33
    • 41149173027 scopus 로고    scopus 로고
    • Uncertainty-based multi-objective optimization of groundwater remediation design.
    • Singh, A., and Minsker, B. (2008). "Uncertainty-based multi-objective optimization of groundwater remediation design." Water Resour. Res., 44(2), W02404.
    • (2008) Water Resour. Res. , vol.44 , Issue.2 , pp. W02404
    • Singh, A.1    Minsker, B.2
  • 34
    • 79955775830 scopus 로고    scopus 로고
    • Multi-objective optimization of pump-and-treat-based optimal multilayer aquifer remediation design with flexible remediation time.
    • Singh, T. S., and Chakrabarty, D. (2011). "Multi-objective optimization of pump-and-treat-based optimal multilayer aquifer remediation design with flexible remediation time." J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0000327, 413-420.
    • (2011) J. Hydrol. Eng. , pp. 413-420
    • Singh, T.S.1    Chakrabarty, D.2
  • 35
    • 34250652870 scopus 로고    scopus 로고
    • Multi-scale island injection genetic algorithms for groundwater remediation.
    • Sinha, E., and Minsker, B. S. (2007). "Multi-scale island injection genetic algorithms for groundwater remediation." Adv. Water Resour., 30(9), 1933-1942.
    • (2007) Adv. Water Resour. , vol.30 , Issue.9 , pp. 1933-1942
    • Sinha, E.1    Minsker, B.S.2
  • 38
    • 79955899724 scopus 로고    scopus 로고
    • Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs.
    • Yan, S., and Minsker, B. S. (2011). "Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs." J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000106, 284-292.
    • (2011) J. Water Resour. Plann. Manage. , pp. 284-292
    • Yan, S.1    Minsker, B.S.2
  • 39
    • 0033064794 scopus 로고    scopus 로고
    • Comparison of optimization methods for ground-water bioremediation.
    • Yoon, J. H., and Shoemaker, C. A. (1999). "Comparison of optimization methods for ground-water bioremediation." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(1999)125:1(54), 0054-0063.
    • (1999) J. Water Resour. Plann. Manage. , pp. 0054-0063
    • Yoon, J.H.1    Shoemaker, C.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.