메뉴 건너뛰기




Volumn 54, Issue , 2016, Pages 109-117

Digital implementation of a virtual insect trained by spike-timing dependent plasticity

Author keywords

Neural network; Spike timing dependent plasticity

Indexed keywords

CMOS INTEGRATED CIRCUITS; HARDWARE; NEURAL NETWORKS; RECONFIGURABLE HARDWARE;

EID: 84960920135     PISSN: 01679260     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.vlsi.2016.01.002     Document Type: Article
Times cited : (17)

References (20)
  • 4
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • W. Maass Networks of spiking neurons: the third generation of neural network models Neural Netw. 10 9 1997 1659 1671
    • (1997) Neural Netw. , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 7
    • 0024888743 scopus 로고
    • VLSI architectures for neural networks
    • P. Treleaven, M. Pacheco, and M. Vellasco VLSI architectures for neural networks IEEE Micro 9 6 1989 8 27
    • (1989) IEEE Micro , vol.9 , Issue.6 , pp. 8-27
    • Treleaven, P.1    Pacheco, M.2    Vellasco, M.3
  • 9
    • 0007961183 scopus 로고
    • A highly parallel digital architecture for neural network emulation
    • Ebong Idong, Springer
    • D. Hammerstrom A highly parallel digital architecture for neural network emulation Ebong Idong, VLSI for artificial intelligence and neural networks 1991 Springer 357 366
    • (1991) VLSI for Artificial Intelligence and Neural Networks , pp. 357-366
    • Hammerstrom, D.1
  • 10
    • 0026830166 scopus 로고
    • SYNAPSE - A neurocomputer that synthesizes neural algorithms on a parallel systolic engine
    • U. Ramacher SYNAPSE - a neurocomputer that synthesizes neural algorithms on a parallel systolic engine J. Parallel Distrib. Comput. 14 3 1992 306 318
    • (1992) J. Parallel Distrib. Comput. , vol.14 , Issue.3 , pp. 306-318
    • Ramacher, U.1
  • 11
    • 60849104070 scopus 로고    scopus 로고
    • Learning anticipation via spiking networks: Application to navigation control
    • P. Arena, L. Fortuna, M. Frasca, and L. Patane Learning anticipation via spiking networks: application to navigation control IEEE Trans. Neural Netw. 20 2 2009 202 216
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 202-216
    • Arena, P.1    Fortuna, L.2    Frasca, M.3    Patane, L.4
  • 12
    • 33749243459 scopus 로고    scopus 로고
    • Imitation learning with spiking neural networks and real-world devices
    • H. Burgsteiner Imitation learning with spiking neural networks and real-world devices Eng. Appl. Artif. Intell. 19 7 2006 741 752
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , Issue.7 , pp. 741-752
    • Burgsteiner, H.1
  • 14
    • 0742268989 scopus 로고    scopus 로고
    • Simple model of spiking neurons
    • E.M. Izhikevich Simple model of spiking neurons IEEE Trans. Neural Netw. 14 6 2003 1569 1572
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.6 , pp. 1569-1572
    • Izhikevich, E.M.1
  • 15
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • E.M. Izhikevich Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15 5 2004 1063 1070
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 18
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • G.-q Bi, and M.-m Poo Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type J. Neurosci. 18 24 1998 10464 10472
    • (1998) J. Neurosci. , vol.18 , Issue.24 , pp. 10464-10472
    • Bi, G.-Q.1    Poo, M.-M.2
  • 19
    • 51949112980 scopus 로고    scopus 로고
    • Spike-timing-dependent learning in memristive nanodevices
    • G.S. Snider Spike-timing-dependent learning in memristive nanodevices IEEE Int. Symp. Nanoscale Arch. 2008 85 92
    • (2008) IEEE Int. Symp. Nanoscale Arch. , pp. 85-92
    • Snider, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.