-
1
-
-
84902348660
-
Spike-based indirect training of a spiking neural network-controlled virtual insect
-
X. Zhang, Z. Xu, C. Henriquez, S. Ferrari, Spike-based indirect training of a spiking neural network-controlled virtual insect, In: Proceedings of IEEE 52nd Annual Conference on Decision and Control (CDC), 2013, pp. 6798-6805.
-
(2013)
Proceedings of IEEE 52nd Annual Conference on Decision and Control (CDC)
, pp. 6798-6805
-
-
Zhang, X.1
Xu, Z.2
Henriquez, C.3
Ferrari, S.4
-
2
-
-
47849126672
-
Allocating tasks in multi-core processor based parallel system
-
Y. Liu, X. Zhang, H. Li, D. Qian, Allocating tasks in multi-core processor based parallel system, In: IFIP International Conference on Network and Parallel Computing Workshops, 2007, pp. 748-753.
-
(2007)
IFIP International Conference on Network and Parallel Computing Workshops
, pp. 748-753
-
-
Liu, Y.1
Zhang, X.2
Li, H.3
Qian, D.4
-
3
-
-
0000014608
-
Digital neurohardware: Principles and perspectives
-
T. Schoenauer, A. Jahnke, U. Roth, H. Klar, Digital neurohardware: principles and perspectives, In: Proceedings of Neuronal Networks in Applications, 1998, pp. 101-106.
-
(1998)
Proceedings of Neuronal Networks in Applications
, pp. 101-106
-
-
Schoenauer, T.1
Jahnke, A.2
Roth, U.3
Klar, H.4
-
4
-
-
0031472340
-
Networks of spiking neurons: The third generation of neural network models
-
W. Maass Networks of spiking neurons: the third generation of neural network models Neural Netw. 10 9 1997 1659 1671
-
(1997)
Neural Netw.
, vol.10
, Issue.9
, pp. 1659-1671
-
-
Maass, W.1
-
9
-
-
0007961183
-
A highly parallel digital architecture for neural network emulation
-
Ebong Idong, Springer
-
D. Hammerstrom A highly parallel digital architecture for neural network emulation Ebong Idong, VLSI for artificial intelligence and neural networks 1991 Springer 357 366
-
(1991)
VLSI for Artificial Intelligence and Neural Networks
, pp. 357-366
-
-
Hammerstrom, D.1
-
10
-
-
0026830166
-
SYNAPSE - A neurocomputer that synthesizes neural algorithms on a parallel systolic engine
-
U. Ramacher SYNAPSE - a neurocomputer that synthesizes neural algorithms on a parallel systolic engine J. Parallel Distrib. Comput. 14 3 1992 306 318
-
(1992)
J. Parallel Distrib. Comput.
, vol.14
, Issue.3
, pp. 306-318
-
-
Ramacher, U.1
-
11
-
-
60849104070
-
Learning anticipation via spiking networks: Application to navigation control
-
P. Arena, L. Fortuna, M. Frasca, and L. Patane Learning anticipation via spiking networks: application to navigation control IEEE Trans. Neural Netw. 20 2 2009 202 216
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.2
, pp. 202-216
-
-
Arena, P.1
Fortuna, L.2
Frasca, M.3
Patane, L.4
-
12
-
-
33749243459
-
Imitation learning with spiking neural networks and real-world devices
-
H. Burgsteiner Imitation learning with spiking neural networks and real-world devices Eng. Appl. Artif. Intell. 19 7 2006 741 752
-
(2006)
Eng. Appl. Artif. Intell.
, vol.19
, Issue.7
, pp. 741-752
-
-
Burgsteiner, H.1
-
13
-
-
56349139220
-
Biologically realizable reward-modulated hebbian training for spiking neural networks
-
S. Ferrari, B. Mehta, G. Di Muro, A.M.J. VanDongen, C. Henriquez, Biologically realizable reward-modulated hebbian training for spiking neural networks, In: Proceedings of IEEE International Joint Conference on Neural Networks, 2008, pp. 1780-1786.
-
(2008)
Proceedings of IEEE International Joint Conference on Neural Networks
, pp. 1780-1786
-
-
Ferrari, S.1
Mehta, B.2
Di Muro, G.3
VanDongen, A.M.J.4
Henriquez, C.5
-
14
-
-
0742268989
-
Simple model of spiking neurons
-
E.M. Izhikevich Simple model of spiking neurons IEEE Trans. Neural Netw. 14 6 2003 1569 1572
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.6
, pp. 1569-1572
-
-
Izhikevich, E.M.1
-
15
-
-
4344661328
-
Which model to use for cortical spiking neurons?
-
E.M. Izhikevich Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15 5 2004 1063 1070
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.5
, pp. 1063-1070
-
-
Izhikevich, E.M.1
-
18
-
-
0032535029
-
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
-
G.-q Bi, and M.-m Poo Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type J. Neurosci. 18 24 1998 10464 10472
-
(1998)
J. Neurosci.
, vol.18
, Issue.24
, pp. 10464-10472
-
-
Bi, G.-Q.1
Poo, M.-M.2
-
19
-
-
51949112980
-
Spike-timing-dependent learning in memristive nanodevices
-
G.S. Snider Spike-timing-dependent learning in memristive nanodevices IEEE Int. Symp. Nanoscale Arch. 2008 85 92
-
(2008)
IEEE Int. Symp. Nanoscale Arch.
, pp. 85-92
-
-
Snider, G.S.1
-
20
-
-
84860660887
-
On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex
-
C. Zamarreno-Ramos, L.A. Camunas-Mesa, J.A. Perez-Carrasco, T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex Front. Neurosci. 5 26 2011 1 22
-
(2011)
Front. Neurosci.
, vol.5
, Issue.26
, pp. 1-22
-
-
Zamarreno-Ramos, C.1
Camunas-Mesa, L.A.2
Perez-Carrasco, J.A.3
Masquelier, T.4
Serrano-Gotarredona, T.5
Linares-Barranco, B.6
|