메뉴 건너뛰기




Volumn 252, Issue 1, 2016, Pages 322-333

Large-network travel time distribution estimation for ambulances

Author keywords

Markov chain Monte Carlo; OR in health services; Traffic; Transportation; Travel time estimation

Indexed keywords

AMBULANCES; FLEET OPERATIONS; MARKOV PROCESSES; MOTOR TRANSPORTATION; ROADS AND STREETS; TELECOMMUNICATION TRAFFIC; TRAFFIC CONTROL; TRANSPORTATION;

EID: 84960433929     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2016.01.004     Document Type: Article
Times cited : (61)

References (39)
  • 5
    • 77950819108 scopus 로고    scopus 로고
    • Electronic companion to "empirical analysis of ambulance travel times: The case of Calgary emergency medical services"
    • Budge S., Ingolfsson A., and Zerom D. Electronic companion to "Empirical analysis of ambulance travel times: The case of Calgary emergency medical services" Management Science 56 2010 716 723
    • (2010) Management Science , vol.56 , pp. 716-723
    • Budge, S.1    Ingolfsson, A.2    Zerom, D.3
  • 6
    • 77950819108 scopus 로고    scopus 로고
    • Empirical analysis of ambulance travel times: The case of Calgary emergency medical services
    • Budge S., Ingolfsson A., and Zerom D. Empirical analysis of ambulance travel times: The case of Calgary emergency medical services Management Science 56 2010 716 723
    • (2010) Management Science , vol.56 , pp. 716-723
    • Budge, S.1    Ingolfsson, A.2    Zerom, D.3
  • 7
    • 77954145885 scopus 로고    scopus 로고
    • Why the closest ambulance cannot be dispatched in an urban emergency medical services system
    • Dean S. Why the closest ambulance cannot be dispatched in an urban emergency medical services system Prehospital and Disaster Medicine 23 2008 161 165
    • (2008) Prehospital and Disaster Medicine , vol.23 , pp. 161-165
    • Dean, S.1
  • 8
    • 0037641025 scopus 로고    scopus 로고
    • Improving the emergency service delivery in St. Albert
    • Erkut E., Fenske R., Kabanuk S., Gardiner Q., and Davis J. Improving the emergency service delivery in St. Albert Infor 39 2001 416 433
    • (2001) Infor , vol.39 , pp. 416-433
    • Erkut, E.1    Fenske, R.2    Kabanuk, S.3    Gardiner, Q.4    Davis, J.5
  • 10
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A. Prior distributions for variance parameters in hierarchical models Bayesian Analysis 1 2006 515 533
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 13
    • 33748309520 scopus 로고    scopus 로고
    • Operations research models for the deployment of emergency services vehicles
    • Goldberg J. Operations research models for the deployment of emergency services vehicles EMS Management Journal 1 2004 20 39
    • (2004) EMS Management Journal , vol.1 , pp. 20-39
    • Goldberg, J.1
  • 15
    • 84865748237 scopus 로고    scopus 로고
    • Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning
    • Hofleitner A., Herring R., and Bayen A. Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning Transportation Research Part B 46 2012 1097 1122
    • (2012) Transportation Research Part B , vol.46 , pp. 1097-1122
    • Hofleitner, A.1    Herring, R.2    Bayen, A.3
  • 16
    • 49549118955 scopus 로고    scopus 로고
    • Optimal ambulance location with random delays and travel times
    • Ingolfsson A., Budge S., and Erkut E. Optimal ambulance location with random delays and travel times Health Care Management Science 11 2008 262 274
    • (2008) Health Care Management Science , vol.11 , pp. 262-274
    • Ingolfsson, A.1    Budge, S.2    Erkut, E.3
  • 17
    • 84877065195 scopus 로고    scopus 로고
    • Travel time estimation for urban road networks using low frequency probe vehicle data
    • Jenelius E., and Koutsopoulos H. Travel time estimation for urban road networks using low frequency probe vehicle data Transportation Research Part B 53 2013 64 81
    • (2013) Transportation Research Part B , vol.53 , pp. 64-81
    • Jenelius, E.1    Koutsopoulos, H.2
  • 20
    • 0016533407 scopus 로고
    • Determining the relation between fire engine travel times and travel distances in New York City
    • Kolesar P., Walker W., and Hausner J. Determining the relation between fire engine travel times and travel distances in New York City Operations Research 23 1975 614 627
    • (1975) Operations Research , vol.23 , pp. 614-627
    • Kolesar, P.1    Walker, W.2    Hausner, J.3
  • 24
    • 77955630545 scopus 로고    scopus 로고
    • Using GPS data to gain insight into public transport travel time variability
    • Mazloumi E., Currie G., and Rose G. Using GPS data to gain insight into public transport travel time variability Journal of Transportation Engineering 136 2009 623 631
    • (2009) Journal of Transportation Engineering , vol.136 , pp. 623-631
    • Mazloumi, E.1    Currie, G.2    Rose, G.3
  • 26
    • 27144536576 scopus 로고    scopus 로고
    • Vehicle routing and scheduling with dynamic travel times
    • Potvin J., Xu Y., and Benyahia I. Vehicle routing and scheduling with dynamic travel times Computers & Operations Research 33 2006 1129 1137
    • (2006) Computers & Operations Research , vol.33 , pp. 1129-1137
    • Potvin, J.1    Xu, Y.2    Benyahia, I.3
  • 27
    • 34548418419 scopus 로고    scopus 로고
    • Current map-matching algorithms for transport applications: State-of-The art and future research directions
    • Quddus M., Ochieng W., and Noland R. Current map-matching algorithms for transport applications: State-of-The art and future research directions Transportation Research Part C 15 2007 312 328
    • (2007) Transportation Research Part C , vol.15 , pp. 312-328
    • Quddus, M.1    Ochieng, W.2    Noland, R.3
  • 28
    • 84875483253 scopus 로고    scopus 로고
    • Path inference from sparse floating car data for urban networks
    • Rahmani M., and Koutsopoulos H. Path inference from sparse floating car data for urban networks Transportation Research Part C 30 2013 41 54
    • (2013) Transportation Research Part C , vol.30 , pp. 41-54
    • Rahmani, M.1    Koutsopoulos, H.2
  • 29
    • 84867613893 scopus 로고    scopus 로고
    • On the estimation of arterial route travel time distribution with Markov chains
    • Ramezani M., and Geroliminis N. On the estimation of arterial route travel time distribution with Markov chains Transportation Research Part B 46 2012 1576 1590
    • (2012) Transportation Research Part B , vol.46 , pp. 1576-1590
    • Ramezani, M.1    Geroliminis, N.2
  • 31
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts G., and Rosenthal J. Optimal scaling for various Metropolis-Hastings algorithms Statistical Science 16 2001 351 367
    • (2001) Statistical Science , vol.16 , pp. 351-367
    • Roberts, G.1    Rosenthal, J.2
  • 32
    • 84857917989 scopus 로고    scopus 로고
    • Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming
    • Schmid V. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming European Journal of Operational Research 219 2012 611 621
    • (2012) European Journal of Operational Research , vol.219 , pp. 611-621
    • Schmid, V.1
  • 33
    • 40549109271 scopus 로고    scopus 로고
    • Generalized additive models for location scale and shape (GAMLSS) in R
    • Stasinopoulos D., and Rigby R. Generalized additive models for location scale and shape (GAMLSS) in R Journal of Statistical Software 23 2007 1 46
    • (2007) Journal of Statistical Software , vol.23 , pp. 1-46
    • Stasinopoulos, D.1    Rigby, R.2
  • 34
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney L. Markov chains for exploring posterior distributions The Annals of Statistics 22 1994 1701 1728
    • (1994) The Annals of Statistics , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 35
    • 33748436406 scopus 로고    scopus 로고
    • A parallelizable dynamic fleet management model with random travel times
    • Topaloglu H. A parallelizable dynamic fleet management model with random travel times European Journal of Operational Research 175 2006 782 805
    • (2006) European Journal of Operational Research , vol.175 , pp. 782-805
    • Topaloglu, H.1
  • 39
    • 84897087577 scopus 로고    scopus 로고
    • A simulation optimization framework for ambulance deployment and relocation problems
    • Zhen L., Wang K., Hu H., and Chang D. A simulation optimization framework for ambulance deployment and relocation problems Computers & Industrial Engineering 72 2014 12 23
    • (2014) Computers & Industrial Engineering , vol.72 , pp. 12-23
    • Zhen, L.1    Wang, K.2    Hu, H.3    Chang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.