메뉴 건너뛰기




Volumn 46, Issue 1, 2016, Pages 311-324

Graph embedded extreme learning machine

Author keywords

Extreme learning machine (ELM); Facial image classification; Graph embedding; Human action recognition

Indexed keywords

ALGORITHMS; BEHAVIORAL RESEARCH; CLASSIFICATION (OF INFORMATION); FACE RECOGNITION; FEEDFORWARD NEURAL NETWORKS; KNOWLEDGE ACQUISITION; NETWORK LAYERS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS;

EID: 84960389591     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2015.2401973     Document Type: Article
Times cited : (108)

References (58)
  • 1
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • Budapest, Hungary
    • G. Huang, Q. Zhu, and C. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2. Budapest, Hungary, 2004, pp. 985-990.
    • (2004) Proc. IEEE Int. Joint Conf. Neural Netw. , vol.2 , pp. 985-990
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 2
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct.
    • D. Rumelhart, G. Hinton, and R. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 3
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov.
    • M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 4
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Mar.
    • P. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.1
  • 5
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • Feb.
    • R. Zhang, Y. Lan, G. Huang, and Z. Zu, "Universal approximation of extreme learning machine with adaptive growth of hidden nodes," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 365-371, Feb. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.2 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.3    Zu, Z.4
  • 6
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul.
    • G. Huang, L. Chen, and C. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.1    Chen, L.2    Siew, C.3
  • 7
    • 79958178274 scopus 로고    scopus 로고
    • Extreme learning machine: A survey
    • G. Huang, D. Wang, and Y. Lan, "Extreme learning machine: A survey," Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, 2011.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.2 , Issue.2 , pp. 107-122
    • Huang, G.1    Wang, D.2    Lan, Y.3
  • 9
    • 84906948723 scopus 로고    scopus 로고
    • An insight to extreme learning machines: Random neurons, random features and kernels
    • G. Huang, "An insight to extreme learning machines: Random neurons, random features and kernels," Cogn. Comput., vol. 6, no. 3, pp. 379-390, 2014.
    • (2014) Cogn. Comput. , vol.6 , Issue.3 , pp. 379-390
    • Huang, G.1
  • 10
    • 84912119287 scopus 로고    scopus 로고
    • Fast online learning algorithm for landmark recognition based on BoW framework
    • Hangzhou, China
    • J. Cao, T. Chen, and J. Fan, "Fast online learning algorithm for landmark recognition based on BoW framework," in Proc. IEEE Conf. Ind. Electron. Appl., Hangzhou, China, 2014, pp. 1163-1168.
    • (2014) Proc. IEEE Conf. Ind. Electron. Appl. , pp. 1163-1168
    • Cao, J.1    Chen, T.2    Fan, J.3
  • 11
    • 84887604950 scopus 로고    scopus 로고
    • Minimum class variance extreme learning machine for human action recognition
    • Nov.
    • A. Iosifidis, A. Tefas, and I. Pitas, "Minimum class variance extreme learning machine for human action recognition," IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 11, pp. 1968-1979, Nov. 2013.
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , Issue.11 , pp. 1968-1979
    • Iosifidis, A.1    Tefas, A.2    Pitas, I.3
  • 12
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Jan.
    • S. Yan, D. Xu, B. Zhang, and H. Zhang, "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.4
  • 14
    • 84971539063 scopus 로고    scopus 로고
    • Discriminative graph regularized extreme learning machine for face recognition
    • Feb.
    • Y. Peng, S. Wang, X. Long, and B. L. Lu, "Discriminative graph regularized extreme learning machine for face recognition," Neurocomputing, vol. 149, pp. 340-353, Feb. 2015.
    • Neurocomputing , vol.149 , Issue.2015 , pp. 340-353
    • Peng, Y.1    Wang, S.2    Long, X.3    Lu, B.L.4
  • 16
    • 84906935799 scopus 로고    scopus 로고
    • Regularized extreme learning machine for multi-view semi-supervised action recognition
    • Dec.
    • A. Iosifidis, A. Tefas, and I. Pitas, "Regularized extreme learning machine for multi-view semi-supervised action recognition," Neurocomputing, vol. 145, pp. 250-262, Dec. 2014.
    • (2014) Neurocomputing , vol.145 , pp. 250-262
    • Iosifidis, A.1    Tefas, A.2    Pitas, I.3
  • 17
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 18
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Jun.
    • L. Saul and S. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," J. Mach. Learn. Res., vol. 4, pp. 119-155, Jun. 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 20
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • May
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, May 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 21
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr.
    • G. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 22
    • 49749131620 scopus 로고    scopus 로고
    • Spectral regression: A unified approach for sparse subspace learning
    • D. Cai, X. He, and J. Han, "Spectral regression: A unified approach for sparse subspace learning," in Proc. Int. Conf. Data Min., Omaha, NE, USA, 2007, pp. 73-82.
    • (2007) Proc. Int. Conf. Data Min., Omaha, NE, USA , pp. 73-82
    • Cai, D.1    He, X.2    Han, J.3
  • 23
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning
    • Rio de Janeiro, Brazil
    • D. Cai, X. He, and J. Han, "Spectral regression for efficient regularized subspace learning," in Proc. Int. Conf. Comput. Vis., Rio de Janeiro, Brazil, 2007, pp. 1-8.
    • (2007) Proc. Int. Conf. Comput. Vis. , pp. 1-8
    • Cai, D.1    He, X.2    Han, J.3
  • 25
    • 84887012141 scopus 로고    scopus 로고
    • Using SVMs with randomised feature spaces: An extreme learning approach
    • Bruges, Belgium
    • B. Frenay and M. Verleysen, "Using SVMs with randomised feature spaces: An extreme learning approach," in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, 2010, pp. 315-320.
    • (2010) Proc. Eur. Symp. Artif. Neural Netw. , pp. 315-320
    • Frenay, B.1    Verleysen, M.2
  • 28
    • 73549115421 scopus 로고    scopus 로고
    • When is there a representer theorem? Vector versus matrix regularizers
    • Nov.
    • A. Argyriou, C. Micchelli, and M. Pontil, "When is there a representer theorem? Vector versus matrix regularizers," J. Mach. Learn. Res., vol. 10, pp. 2507-2529, Nov. 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2507-2529
    • Argyriou, A.1    Micchelli, C.2    Pontil, M.3
  • 29
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • Sydney, NSW, USA
    • H. Wang and C. Schmid, "Action recognition with improved trajectories," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Sydney, NSW, USA, 2013, pp. 3551-3558.
    • (2013) Proc. IEEE Int. Conf. Comput. Vis. (ICCV) , pp. 3551-3558
    • Wang, H.1    Schmid, C.2
  • 31
    • 84886567160 scopus 로고    scopus 로고
    • School Inf. Comput. Sci., Univ. California, Irvine, CA, USA,. [Online]. Available
    • K. Bache and M. Lichman, "UCI machine learning repository," School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, 2013. [Online]. Available: http://archive.ics.uci.edu/ml
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 32
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification
    • Sarasota, FL, USA
    • F. Samaria and A. Harter, "Parameterisation of a stochastic model for human face identification," in Proc. IEEE Workshop Appl. Comput. Vis., Sarasota, FL, USA, 1994, pp. 138-142.
    • (1994) Proc. IEEE Workshop Appl. Comput. Vis. , pp. 138-142
    • Samaria, F.1    Harter, A.2
  • 34
    • 18144420071 scopus 로고    scopus 로고
    • Acquiring linear subspaces for face recognition under variable lighting
    • May
    • K. Lee, J. Ho, and D. Kriegman, "Acquiring linear subspaces for face recognition under variable lighting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 684-698, May 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.5 , pp. 684-698
    • Lee, K.1    Ho, J.2    Kriegman, D.3
  • 39
    • 40049103965 scopus 로고    scopus 로고
    • Dept. Stat. Actuarial Sci., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep.
    • M. Zhu, "Recall, precision and average precision," Dept. Stat. Actuarial Sci., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep., 2004.
    • (2004) Recall, Precision and Average Precision
    • Zhu, M.1
  • 40
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segemnts for activity classification
    • Crete, Greece
    • J. Niebles, C. Chend, and L. Fei-Fei, "Modeling temporal structure of decomposable motion segemnts for activity classification," in Proc. Eur. Conf. Comput. Vis., Crete, Greece, 2010, pp. 392-405.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 392-405
    • Niebles, J.1    Chend, C.2    Fei-Fei, L.3
  • 44
    • 77951287219 scopus 로고    scopus 로고
    • Projective nonnegative graph embedding
    • May
    • X. Liu, S. Yan, and H. Jin, "Projective nonnegative graph embedding," IEEE Trans. Image Process., vol. 19, no. 5, pp. 1126-1137, May 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.5 , pp. 1126-1137
    • Liu, X.1    Yan, S.2    Jin, H.3
  • 45
    • 84891916951 scopus 로고    scopus 로고
    • One-sample face recognition with local similarity decisions
    • A. James, "One-sample face recognition with local similarity decisions," Int. J. Appl. Pattern Recognit., vol. 1, no. 1, pp. 61-80, 2013.
    • (2013) Int. J. Appl. Pattern Recognit. , vol.1 , Issue.1 , pp. 61-80
    • James, A.1
  • 46
    • 84873931788 scopus 로고    scopus 로고
    • Face recognition with multi-resolution spectral feature images
    • Feb. Art. ID e55700
    • Z. Sun et al., "Face recognition with multi-resolution spectral feature images," PLoS ONE, vol. 8, no. 2, Feb. 2013, Art. ID e55700.
    • (2013) PLoS ONE , vol.8 , Issue.2
    • Sun, Z.1
  • 47
    • 84906936061 scopus 로고    scopus 로고
    • Weighted group sparse representation for undersampled face recognition
    • Dec.
    • X. Tang, G. Feng, and J. Cai, "Weighted group sparse representation for undersampled face recognition," Neurocomputing, vol. 145, pp. 402-415, Dec. 2014.
    • (2014) Neurocomputing , vol.145 , pp. 402-415
    • Tang, X.1    Feng, G.2    Cai, J.3
  • 48
    • 84913537478 scopus 로고    scopus 로고
    • Maximum margin projection subspace learning for visual data analysis
    • Oct.
    • S. Nikitidis, A. Tefas, and I. Pitas, "Maximum margin projection subspace learning for visual data analysis," IEEE Trans. Image Process., vol. 23, no. 10, pp. 4413-4425, Oct. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.10 , pp. 4413-4425
    • Nikitidis, S.1    Tefas, A.2    Pitas, I.3
  • 49
    • 84864282565 scopus 로고    scopus 로고
    • Subclass discriminant nonnegative matrix factorization for facial image analysis
    • S. Nikitidis, A. Tefas, and I. Pitas, "Subclass discriminant nonnegative matrix factorization for facial image analysis," Pattern Recognit., vol. 45, no. 12, pp. 4080-4091, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.12 , pp. 4080-4091
    • Nikitidis, S.1    Tefas, A.2    Pitas, I.3
  • 50
    • 84912083406 scopus 로고    scopus 로고
    • Projected gradients for subclass discriminant nonnegative subspace learning
    • Dec.
    • S. Nikitidis, A. Tefas, and I. Pitas, "Projected gradients for subclass discriminant nonnegative subspace learning," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2168-2267, Dec. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.12 , pp. 2168-2267
    • Nikitidis, S.1    Tefas, A.2    Pitas, I.3
  • 51
  • 52
    • 84906498646 scopus 로고    scopus 로고
    • Natural action recognition using invariant 3D motion encoding
    • Zurich, Switzerland
    • S. Hadfield, K. Lebeda, and R. Bowden, "Natural action recognition using invariant 3D motion encoding," in Proc. Eur. Conf. Comput. Vis., Zurich, Switzerland, 2014, pp. 758-771.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 758-771
    • Hadfield, S.1    Lebeda, K.2    Bowden, R.3
  • 53
    • 84856661125 scopus 로고    scopus 로고
    • Learning spatiotemporal graphs of human activities
    • Barcelona, Spain
    • W. Brendel and S. Todorovic, "Learning spatiotemporal graphs of human activities," in Proc. Int. Conf. Comput. Vis., Barcelona, Spain, 2011, pp. 778-785.
    • (2011) Proc. Int. Conf. Comput. Vis. , pp. 778-785
    • Brendel, W.1    Todorovic, S.2
  • 54
    • 84867884391 scopus 로고    scopus 로고
    • Space-variant descriptor sampling for action recognition based on saliency and eye movements
    • Florence, Italy
    • E. Vig, M. Dorr, and D. Cox, "Space-variant descriptor sampling for action recognition based on saliency and eye movements," in Proc. Eur. Conf. Comput. Vis., Florence, Italy, 2012, pp. 84-97.
    • (2012) Proc. Eur. Conf. Comput. Vis. , pp. 84-97
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 55
    • 84898405815 scopus 로고    scopus 로고
    • Recognizing activities with cluster-tries of tracklets
    • Bristol, U.K.
    • A. Gaidon, Z. Harchaoui, and C. Schmid, "Recognizing activities with cluster-tries of tracklets," in Proc. Brit. Mach. Vis. Conf., Bristol, U.K., 2012, pp. 1-14.
    • (2012) Proc. Brit. Mach. Vis. Conf. , pp. 1-14
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 56
    • 84867848624 scopus 로고    scopus 로고
    • Dynamic eye movement datasets and learnt saliency models for visual action recognition
    • Florence, Italy
    • S. Mathe and C. Sminchisescu, "Dynamic eye movement datasets and learnt saliency models for visual action recognition," in Proc. Eur. Conf. Comput. Vis., Florence, Italy, 2012, pp. 842-856.
    • (2012) Proc. Eur. Conf. Comput. Vis. , pp. 842-856
    • Mathe, S.1    Sminchisescu, C.2
  • 57
    • 84867849524 scopus 로고    scopus 로고
    • Trajectory-based modeling of human actions with motion reference points
    • Florence, Italy
    • Y. Jiang, Q. Dai, X. Xue, W. Liu, and C. Ngo, "Trajectory-based modeling of human actions with motion reference points," in Proc. Eur. Conf. Comput. Vis., Florence, Italy, 2012, pp. 425-438.
    • (2012) Proc. Eur. Conf. Comput. Vis. , pp. 425-438
    • Jiang, Y.1    Dai, Q.2    Xue, X.3    Liu, W.4    Ngo, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.