-
12
-
-
84863822499
-
-
Y. Morishima, D. Schunk, A. Bruhin, C. C. Ruff, E. Fehr, Neuron 75, 73-79 (2012).
-
(2012)
Neuron
, vol.75
, pp. 73-79
-
-
Morishima, Y.1
Schunk, D.2
Bruhin, A.3
Ruff, C.C.4
Fehr, E.5
-
16
-
-
47949122936
-
-
K. E. Stephan et al., Neuroimage 42, 649-662 (2008).
-
(2008)
Neuroimage
, vol.42
, pp. 649-662
-
-
Stephan, K.E.1
-
18
-
-
1242352021
-
-
T. Singer et al., Science 303, 1157-1162 (2004).
-
(2004)
Science
, vol.303
, pp. 1157-1162
-
-
Singer, T.1
-
19
-
-
77957319508
-
-
G. Hein, G. Silani, K. Preuschoff, C. D. Batson, T. Singer, Neuron 68, 149-160 (2010).
-
(2010)
Neuron
, vol.68
, pp. 149-160
-
-
Hein, G.1
Silani, G.2
Preuschoff, K.3
Batson, C.D.4
Singer, T.5
-
21
-
-
85026942456
-
-
Methods and materials, supplementary analyses, supplementary figures, and supplementary tables are available as supporting material on Science Online
-
Methods and materials, supplementary analyses, supplementary figures, and supplementary tables are available as supporting material on Science Online.
-
-
-
-
22
-
-
33646750956
-
-
D. Tomlin et al., Science 312, 1047-1050 (2006).
-
(2006)
Science
, vol.312
, pp. 1047-1050
-
-
Tomlin, D.1
-
24
-
-
77955647569
-
-
K. L. Phan, C. S. Sripada, M. Angstadt, K. McCabe, Proc. Natl. Acad. Sci. U.S.A. 107, 13099-13104 (2010).
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 13099-13104
-
-
Phan, K.L.1
Sripada, C.S.2
Angstadt, M.3
McCabe, K.4
-
28
-
-
0001259111
-
-
J. A. Hoeting, D. Madigan, A. E. Raftery, C. T. Volinsky, Stat. Sci. 14, 382 (1999).
-
(1999)
Stat. Sci
, vol.14
, pp. 382
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
29
-
-
85026942124
-
-
If we use both the number of altruistic decisions in the baseline condition and the increase in the frequency of altruistic decisions in the motive-induction conditions, the behavioral classification becomes marginally significant (classification accuracy of 64.2%, P = 0.051). However, if we perform the same classification analysis with connectivity data-i.e., in addition to the Δ-DCM parameters we also use the level of the DCM parameters in the baseline condition for classification purposes-the classification accuracy increases even to 83%, P = 0.00004. Thus, the classification based on brain connectivity data clearly outperforms the behavior-based classification (see also supplementary materials)
-
If we use both the number of altruistic decisions in the baseline condition and the increase in the frequency of altruistic decisions in the motive-induction conditions, the behavioral classification becomes marginally significant (classification accuracy of 64.2%, P = 0.051). However, if we perform the same classification analysis with connectivity data-i.e., in addition to the Δ-DCM parameters we also use the level of the DCM parameters in the baseline condition for classification purposes-the classification accuracy increases even to 83%, P = 0.00004. Thus, the classification based on brain connectivity data clearly outperforms the behavior-based classification (see also supplementary materials).
-
-
-
-
30
-
-
67349207353
-
-
K. E. Stephan, W. D. Penny, J. Daunizeau, R. J. Moran, K. J. Friston, Neuroimage 46, 1004-1017 (2009).
-
(2009)
Neuroimage
, vol.46
, pp. 1004-1017
-
-
Stephan, K.E.1
Penny, W.D.2
Daunizeau, J.3
Moran, R.J.4
Friston, K.J.5
-
32
-
-
84874547546
-
-
A. Tusche, T. Kahnt, D. Wisniewski, J. D. Haynes, Neuroimage 72, 174-182 (2013).
-
(2013)
Neuroimage
, vol.72
, pp. 174-182
-
-
Tusche, A.1
Kahnt, T.2
Wisniewski, D.3
Haynes, J.D.4
|