메뉴 건너뛰기




Volumn 32, Issue 1, 2016, Pages 67-76

Inter-functional analysis of high-throughput phenotype data by non-parametric clustering and its application to photosynthesis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARABIDOPSIS; CHLOROPLAST; CLUSTER ANALYSIS; GENETICS; GENOTYPE; MUTATION; NONPARAMETRIC TEST; PHENOTYPE; PHOTOSYNTHESIS; PHYSIOLOGY; REPRODUCIBILITY; STATISTICAL MODEL; STATISTICS;

EID: 84959927017     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv515     Document Type: Article
Times cited : (5)

References (65)
  • 1
    • 57749183063 scopus 로고    scopus 로고
    • Biological clustering method for logistic place decision making
    • Lovrek, I. et al (eds). Springer, Berlin Heidelberg
    • Bakar, R. B. A. and Watada, J. (2008) Biological clustering method for logistic place decision making. In: Lovrek, I. et al (eds). Knowledge-Based Intelligent Information and Engineering Systems. Springer, Berlin Heidelberg, pp. 136-143.
    • (2008) Knowledge-Based Intelligent Information and Engineering Systems , pp. 136-143
    • Bakar, R.B.A.1    Watada, J.2
  • 2
    • 44949110144 scopus 로고    scopus 로고
    • Chlorophyll fluorescence: A probe of photosynthesis in vivo
    • Baker, N. R. (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol., 59, 89-113.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 89-113
    • Baker, N.R.1
  • 3
    • 0041346457 scopus 로고    scopus 로고
    • Continuous representations of time-series gene expression data
    • Bar-Joseph, Z. et al. (2003) Continuous representations of time-series gene expression data. J. Comput. Biol., 10, 341-356.
    • (2003) J. Comput. Biol. , vol.10 , pp. 341-356
    • Bar-Joseph, Z.1
  • 4
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph, Z. (2004) Analyzing time series gene expression data. Bioinformatics, 20, 2493-2503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 5
    • 0032728081 scopus 로고    scopus 로고
    • Clustering gene expression patterns
    • Ben-Dor, A. et al. (1999) Clustering gene expression patterns. J. Comput. Biol., 6, 281-297.
    • (1999) J. Comput. Biol. , vol.6 , pp. 281-297
    • Ben-Dor, A.1
  • 6
    • 70349578234 scopus 로고    scopus 로고
    • Cognitive ontologies for neuropsychiatric phenomics research
    • Bilder, R. M. et al. (2009) Cognitive ontologies for neuropsychiatric phenomics research. Cogn. Neuropsychiatry, 14, 419-450.
    • (2009) Cogn. Neuropsychiatry , vol.14 , pp. 419-450
    • Bilder, R.M.1
  • 7
    • 30544439504 scopus 로고    scopus 로고
    • Creation and implications of a phenomegenome network
    • Butte, A. J. and Kohane, I. S. (2006) Creation and implications of a phenomegenome network. Nat. Biotech., 24, 55-62.
    • (2006) Nat. Biotech. , vol.24 , pp. 55-62
    • Butte, A.J.1    Kohane, I.S.2
  • 9
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement
    • Cobb, J. N. et al. (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet., 126, 867-887.
    • (2013) Theor. Appl. Genet. , vol.126 , pp. 867-887
    • Cobb, J.N.1
  • 10
    • 84864312283 scopus 로고    scopus 로고
    • Protein function prediction by clustering of protein-protein interaction network
    • Springer, Berlin Heidelberg
    • Cingovska, I. et al. (2012) Protein Function Prediction by Clustering of Protein-Protein Interaction Network. ICT Innovations 2011, Springer, Berlin Heidelberg, pp. 39-49.
    • (2012) ICT Innovations 2011 , pp. 39-49
    • Cingovska, I.1
  • 12
    • 0024297354 scopus 로고
    • Multiple sequence alignment with hierarchical clustering
    • Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res., 16, 10881-10890.
    • (1988) Nucleic Acids Res. , vol.16 , pp. 10881-10890
    • Corpet, F.1
  • 13
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data
    • Costa, I. G. (2004) Comparative analysis of clustering methods for gene expression time course data. Genet. Mol. Biol., 27, 623-631.
    • (2004) Genet. Mol. Biol. , vol.27 , pp. 623-631
    • Costa, I.G.1
  • 14
    • 84959884682 scopus 로고    scopus 로고
    • Dynamic environmental photosynthetic imaging (DEPI) reveals emergent phenotypes related to the environmental responses of photosynthesis
    • Cruz, J. A. et al. (2015) Dynamic environmental photosynthetic imaging (DEPI) reveals emergent phenotypes related to the environmental responses of photosynthesis. Nat. Biotech., in press.
    • (2015) Nat. Biotech., in Press
    • Cruz, J.A.1
  • 15
    • 0036999722 scopus 로고    scopus 로고
    • Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis
    • Diner, B. A. and Rappaport, F. (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol., 53, 551-580.
    • (2002) Annu. Rev. Plant Biol. , vol.53 , pp. 551-580
    • Diner, B.A.1    Rappaport, F.2
  • 16
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M. B. et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl. Acad. Sci., 95, 14863-14868.
    • (1998) Proc Natl. Acad. Sci. , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 17
    • 0033944826 scopus 로고    scopus 로고
    • GeneRAGE: A robust algorithm for sequence clustering and domain detection
    • Enright, A. J. and Ouzounis, C. A. (2000) GeneRAGE: A robust algorithm for sequence clustering and domain detection. Bioinformatics, 16, 451-457.
    • (2000) Bioinformatics , vol.16 , pp. 451-457
    • Enright, A.J.1    Ouzounis, C.A.2
  • 19
    • 33846036091 scopus 로고    scopus 로고
    • PhenomicDB: A new cross-species genotype/phenotype resource
    • Groth, P. et al. (2007) PhenomicDB: A new cross-species genotype/phenotype resource. Nucleic Acids Res., 35(Suppl. 1), D696-D699.
    • (2007) Nucleic Acids Res. , vol.35 , pp. D696-D699
    • Groth, P.1
  • 20
    • 77955032112 scopus 로고    scopus 로고
    • Phenoclustering: Online mining of cross-species phenotypes
    • Groth, P. et al. (2010) Phenoclustering: Online mining of cross-species phenotypes. Bioinformatics, 26, 1924-1925.
    • (2010) Bioinformatics , vol.26 , pp. 1924-1925
    • Groth, P.1
  • 21
    • 79960909630 scopus 로고    scopus 로고
    • Phenotype mining for functional genomics and gene discovery
    • Springer, New York
    • Groth, P. et al. (2011) Phenotype mining for functional genomics and gene discovery. Silico Tools for Gene Discovery. Springer, New York, pp. 159-173.
    • (2011) Silico Tools for Gene Discovery , pp. 159-173
    • Groth, P.1
  • 22
    • 85011844710 scopus 로고    scopus 로고
    • Photosynthetic measurements with the idea spec: An integrated diode emitter array spectrophotometer/fluorometer
    • Springer, Berlin Heidelberg
    • Hall, C. C. et al. (2013) Photosynthetic measurements with the idea spec: An integrated diode emitter array spectrophotometer/fluorometer. In: Photosynthesis Research for Food, Fuel and the Future. Springer, Berlin Heidelberg, pp. 184-188.
    • (2013) Photosynthesis Research for Food, Fuel and the Future , pp. 184-188
    • Hall, C.C.1
  • 23
    • 32644439684 scopus 로고    scopus 로고
    • Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons
    • Harr, B. and Schlötterer, C. (2006) Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons. Nucleic Acids Res., 34, e8.
    • (2006) Nucleic Acids Res. , vol.34 , pp. e8
    • Harr, B.1    Schlötterer, C.2
  • 24
    • 0345580221 scopus 로고    scopus 로고
    • Large-scale clustering of cDNA-fingerprinting data
    • Herwig, R. et al. (1999) Large-scale clustering of cDNA-fingerprinting data. Genome Res., 9, 1093-1105.
    • (1999) Genome Res. , vol.9 , pp. 1093-1105
    • Herwig, R.1
  • 25
    • 34547852209 scopus 로고    scopus 로고
    • Phenotypic clustering of yeast mutants based on kinetochore microtubule dynamics
    • Jaqaman, K. et al. (2007) Phenotypic clustering of yeast mutants based on kinetochore microtubule dynamics. Bioinformatics, 23, 1666-1673.
    • (2007) Bioinformatics , vol.23 , pp. 1666-1673
    • Jaqaman, K.1
  • 26
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • Johnson, S. C. (1967) Hierarchical clustering schemes. Psychometrika, 32, 241-254.
    • (1967) Psychometrika , vol.32 , pp. 241-254
    • Johnson, S.C.1
  • 28
    • 78650985721 scopus 로고    scopus 로고
    • The importance of energy balance in improving photosynthetic productivity
    • Kramer, D. M. and Evans, J. R. (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol., 155, 70-78.
    • (2011) Plant Physiol. , vol.155 , pp. 70
    • Kramer, D.M.1    Evans, J.R.2
  • 29
    • 3042804076 scopus 로고    scopus 로고
    • Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions
    • Kramer, D. M. et al. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci., 9, 349-357.
    • (2004) Trends Plant Sci. , vol.9 , pp. 349-357
    • Kramer, D.M.1
  • 30
    • 84862234802 scopus 로고    scopus 로고
    • The arabidopsis information resource (tair): Improved gene annotation and new tools
    • Lamesch, P. et al. (2012) The arabidopsis information resource (tair): improved gene annotation and new tools. Nucleic Acids Res., 40, D1202-D1210.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1202-D1210
    • Lamesch, P.1
  • 31
    • 33745634395 scopus 로고    scopus 로고
    • Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences
    • Li, W. and Godzik, A. (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658-1659.
    • (2006) Bioinformatics , vol.22 , pp. 1658-1659
    • Li, W.1    Godzik, A.2
  • 32
    • 34547967202 scopus 로고    scopus 로고
    • Regulatory motif discovery using a population clustering evolutionary algorithm
    • Lones, M. A. and Tyrrell, A. M. (2007) Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4, 403-414.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.4 , pp. 403-414
    • Lones, M.A.1    Tyrrell, A.M.2
  • 33
    • 79953719673 scopus 로고    scopus 로고
    • Chloroplast 2010: A database for large-scale phenotypic screening of Arabidopsis mutants
    • Lu, Y. et al. (2011) Chloroplast 2010: A database for large-scale phenotypic screening of Arabidopsis mutants. Plant Physiol., 155, 1589-1600.
    • (2011) Plant Physiol. , vol.155 , pp. 1589-1600
    • Lu, Y.1
  • 37
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian mixture models
    • McNicholas, P. D. and Murphy, T. B. (2010) Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics, 26, 2705-2712.
    • (2010) Bioinformatics , vol.26 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 38
    • 0000570384 scopus 로고
    • On non-parametric estimates of density functions and regression curves
    • Nadaraya, E. A. (1965) On non-parametric estimates of density functions and regression curves. Theor. Probab. Appl., 10, 186-190.
    • (1965) Theor. Probab. Appl. , vol.10 , pp. 186-190
    • Nadaraya, E.A.1
  • 39
    • 84865141182 scopus 로고    scopus 로고
    • Bayesian model-based clustering of temporal gene expression using autoregressive panel data approach
    • Nascimento, M. et al. (2012) Bayesian model-based clustering of temporal gene expression using autoregressive panel data approach. Bioinformatics, 28, 2004-2007.
    • (2012) Bioinformatics , vol.28 , pp. 2004-2007
    • Nascimento, M.1
  • 40
    • 79951562208 scopus 로고    scopus 로고
    • ATTED-II updates: Condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants
    • Obayashi, T. et al. (2011) ATTED-II updates: Condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell. Physiol., 52, 213-219.
    • (2011) Plant Cell. Physiol. , vol.52 , pp. 213-219
    • Obayashi, T.1
  • 41
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. (1962) On estimation of a probability density function and mode. Ann. Math. Stat., 33, 1065-1076.
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 42
    • 15244355067 scopus 로고
    • Kolmogorov-smirnov test
    • 2nd edn, Cambridge University Press, Cambridge, England, New York
    • Press, W. H. et al. (1992) Kolmogorov-Smirnov Test. In: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, England, New York, pp. 617-620.
    • (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing , pp. 617-620
    • Press, W.H.1
  • 43
    • 34247875975 scopus 로고    scopus 로고
    • Evaluation of gene-expression clustering via mutual information distance measure
    • Priness, I. et al. (2007) Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics, 8, 111.
    • (2007) BMC Bioinformatics , vol.8 , pp. 111
    • Priness, I.1
  • 44
    • 0035861975 scopus 로고    scopus 로고
    • Beyond synexpression relationships: Local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions
    • Qian, J. et al. (2001) Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol., 314, 1053-1066.
    • (2001) J. Mol. Biol. , vol.314 , pp. 1053-1066
    • Qian, J.1
  • 45
    • 0037047161 scopus 로고    scopus 로고
    • Cluster analysis of gene expression dynamics
    • Ramoni, M. F. et al. (2002) Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA, 99, 9121-9126.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 9121-9126
    • Ramoni, M.F.1
  • 46
    • 0031061864 scopus 로고    scopus 로고
    • Parametric and non-parametric unsupervised cluster analysis
    • Roberts, S. J. (1997) Parametric and non-parametric unsupervised cluster analysis. Pattern Recogn., 30, 261-272.
    • (1997) Pattern Recogn. , vol.30 , pp. 261-272
    • Roberts, S.J.1
  • 47
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • Rosenblatt, M. (1956) Remarks on some nonparametric estimates of a density function. Ann. Math. Stat., 27, 832-837.
    • (1956) Ann. Math. Stat. , vol.27 , pp. 832-837
    • Rosenblatt, M.1
  • 48
    • 4944252468 scopus 로고    scopus 로고
    • Using hidden Markov models to analyze gene expression time course data
    • Schliep, A. et al. (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics, 19(Suppl 1), i255-i263.
    • (2003) Bioinformatics , vol.19 , pp. i255-i263
    • Schliep, A.1
  • 49
    • 33646307647 scopus 로고
    • Maximum likelihood estimation
    • Kotz, S. et al, (eds.), 2nd edn. Wiley, Hobokenm NJ
    • Scholz, F. W. (1985) Maximum likelihood estimation. In: Kotz, S. et al, (eds.) Encyclopedia of Statistical Sciences, 2nd edn. Wiley, Hobokenm NJ, pp. 4629-4639.
    • (1985) Encyclopedia of Statistical Sciences , pp. 4629-4639
    • Scholz, F.W.1
  • 50
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat Biotech., 26, 1135-1145.
    • (2008) Nat Biotech. , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 51
    • 79959422007 scopus 로고    scopus 로고
    • An integrative clustering and modeling algorithm for dynamical gene expression data
    • Sivriver, J. et al. (2011) An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinformatics, 27, i392-i400.
    • (2011) Bioinformatics , vol.27 , pp. i392-i400
    • Sivriver, J.1
  • 52
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth, P. (2000) Model selection for probabilistic clustering using cross-validated likelihood. Stat. Comput., 10, 63-72.
    • (2000) Stat. Comput. , vol.10 , pp. 63-72
    • Smyth, P.1
  • 53
    • 0001297207 scopus 로고
    • A law of the logarithm for kernel density estimators
    • Stute, W. (1982) A law of the logarithm for kernel density estimators. Ann. Probab., 10, 414-422.
    • (1982) Ann. Probab. , vol.10 , pp. 414-422
    • Stute, W.1
  • 54
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P. et al. (1999) Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA, 96, 2907-2912.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 55
    • 34848863975 scopus 로고    scopus 로고
    • The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf
    • Takizawa, K. et al. (2007). The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. BBA-Bioenergetics, 1767, 1233-1244.
    • (2007) BBA-Bioenergetics , vol.1767 , pp. 1233-1244
    • Takizawa, K.1
  • 56
    • 84903637193 scopus 로고    scopus 로고
    • Functional approach to high-throughput plant growth analysis
    • Tessmer, O. L. et al. (2013) Functional Approach to High-throughput Plant Growth Analysis. BMC Syst. Biol., 7(Suppl. 6), S17.
    • (2013) BMC Syst. Biol. , vol.7 , pp. S17
    • Tessmer, O.L.1
  • 57
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput., 17, 395-416.
    • (2007) Stat. Comput. , vol.17 , pp. 395-416
    • Von Luxburg, U.1
  • 58
    • 79951799418 scopus 로고    scopus 로고
    • The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms
    • Wagner, G. P. and Zhang, J. (2013) The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nat. Rev. Gen., 12, 204-213.
    • (2013) Nat. Rev. Gen. , vol.12 , pp. 204-213
    • Wagner, G.P.1    Zhang, J.2
  • 59
    • 84876235775 scopus 로고    scopus 로고
    • Function-function correlated multi-label protein function prediction over interaction networks
    • Wang, H. et al. (2013) Function-function correlated multi-label protein function prediction over interaction networks. J. Comput. Biol., 20, 322-343.
    • (2013) J. Comput. Biol. , vol.20 , pp. 322-343
    • Wang, H.1
  • 60
    • 0025573210 scopus 로고
    • A new approach to clustering
    • Wilson, R. and Spann, M. (1990) A new approach to clustering. Pattern Recogn., 23, 1413-1425.
    • (1990) Pattern Recogn. , vol.23 , pp. 1413-1425
    • Wilson, R.1    Spann, M.2
  • 61
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu, L. F. et al. (2002) Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet., 31, 255-265.
    • (2002) Nat. Genet. , vol.31 , pp. 255-265
    • Wu, L.F.1
  • 62
    • 37549058830 scopus 로고    scopus 로고
    • A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase c-subunit regulatory disulfide above the range of thioredoxin modulation
    • Wu, G. et al. (2007) A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase c-subunit regulatory disulfide above the range of thioredoxin modulation. J. Biol. Chem., 282, 36782-36789.
    • (2007) J. Biol. Chem. , vol.282 , pp. 36782-36789
    • Wu, G.1
  • 63
    • 84941649661 scopus 로고    scopus 로고
    • Plant photosynthesis phenomics data quality control
    • Xu, L. et al. (2015) Plant photosynthesis phenomics data quality control. Bioinformatics, 31, 1796-1804.
    • (2015) Bioinformatics , vol.31 , pp. 1796-1804
    • Xu, L.1
  • 64
    • 84922203325 scopus 로고    scopus 로고
    • Combining high-throughput phenotyping and genomewide association studies to reveal natural genetic variation in rice
    • Yang, W. et al. (2014) Combining high-throughput phenotyping and genomewide association studies to reveal natural genetic variation in rice. Nat. Commun., 5, 5087.
    • (2014) Nat. Commun. , vol.5 , pp. 5087
    • Yang, W.1
  • 65
    • 77955695587 scopus 로고    scopus 로고
    • Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants
    • Zhang, P. et al. (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol., 153, 1479-1491.
    • (2010) Plant Physiol. , vol.153 , pp. 1479-1491
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.