메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1275-1280

Unsupervised sparse vector densification for short text similarity

Author keywords

[No Author keywords available]

Indexed keywords

SEMANTICS;

EID: 84959902045     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/n15-1138     Document Type: Conference Paper
Times cited : (67)

References (24)
  • 1
    • 57749169921 scopus 로고    scopus 로고
    • Importance of semantic representation: Dataless classification
    • M. Chang, L. Ratinov, D. Roth, and V. Srikumar. 2008. Importance of semantic representation: Dataless classification. In AAAI, pages 830-835.
    • (2008) AAAI , pp. 830-835
    • Chang, M.1    Ratinov, L.2    Roth, D.3    Srikumar, V.4
  • 3
    • 33750719969 scopus 로고    scopus 로고
    • Overcoming the brittleness bottleneck using Wikipedia: Enhancing text categorization with encyclopedic knowledge
    • E. Gabrilovich and S. Markovitch. 2006. Overcoming the brittleness bottleneck using Wikipedia: Enhancing text categorization with encyclopedic knowledge. In AAAI, pages 1301-1306.
    • (2006) AAAI , pp. 1301-1306
    • Gabrilovich, E.1    Markovitch, S.2
  • 4
    • 84880915872 scopus 로고    scopus 로고
    • Computing semantic relatedness using Wikipedia-based explicit semantic analysis
    • E. Gabrilovich and S. Markovitch. 2007. Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In IJCAI, pages 1606-1611.
    • (2007) IJCAI , pp. 1606-1611
    • Gabrilovich, E.1    Markovitch, S.2
  • 6
    • 84906922931 scopus 로고    scopus 로고
    • Multilingual models for compositional distributed semantics
    • K. M. Hermann and P. Blunsom. 2014. Multilingual models for compositional distributed semantics. In ACL, pages 58-68.
    • (2014) ACL , pp. 58-68
    • Hermann, K.M.1    Blunsom, P.2
  • 7
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • B. Hu, Z. Lu, H. Li, and Q. Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In NIPS, pages 2042-2050.
    • (2014) NIPS , pp. 2042-2050
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 8
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A convolutional neural network for modelling sentences. In ACL, pages 655-665.
    • (2014) ACL , pp. 655-665
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 9
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Q. V. Le and T. Mikolov. 2014. Distributed representations of sentences and documents. In ICML, pages 1188-1196.
    • (2014) ICML , pp. 1188-1196
    • Le, Q.V.1    Mikolov, T.2
  • 10
    • 46649083741 scopus 로고    scopus 로고
    • An empirical evaluation of models of text document similarity
    • M. D. Lee, B. Pincombe, and M.Welsh. 2005. An empirical evaluation of models of text document similarity. In CogSci, pages 1254-1259.
    • (2005) CogSci , pp. 1254-1259
    • Lee, M.D.1    Pincombe, B.2    Welsh, M.3
  • 11
    • 84898987087 scopus 로고    scopus 로고
    • A deep architecture for matching short texts
    • Z. Lu and H. Li. 2013. A deep architecture for matching short texts. In NIPS, pages 1367-1375.
    • (2013) NIPS , pp. 1367-1375
    • Lu, Z.1    Li, H.2
  • 12
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013a. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 13
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • T. Mikolov, W.-t. Yih, and G. Zweig. 2013b. Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746-751.
    • (2013) HLT-NAACL , pp. 746-751
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 15
    • 85064069174 scopus 로고    scopus 로고
    • Lexicon infused phrase embeddings for named entity resolution
    • A. Passos, V. Kumar, and A. McCallum. 2014. Lexicon infused phrase embeddings for named entity resolution. In CoNLL, pages 78-86.
    • (2014) CoNLL , pp. 78-86
    • Passos, A.1    Kumar, V.2    McCallum, A.3
  • 16
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP, pages 1532-1543.
    • (2014) EMNLP , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 17
    • 84862300668 scopus 로고    scopus 로고
    • Design challenges and misconceptions in named entity recognition
    • L. Ratinov and D. Roth. 2009. Design challenges and misconceptions in named entity recognition. In CoNLL, pages 147-155.
    • (2009) CoNLL , pp. 147-155
    • Ratinov, L.1    Roth, D.2
  • 18
    • 38149136576 scopus 로고    scopus 로고
    • A hilbert space embedding for distributions
    • A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. 2007. A hilbert space embedding for distributions. In ALT, pages 13-31.
    • (2007) ALT , pp. 13-31
    • Smola, A.J.1    Gretton, A.2    Song, L.3    Schölkopf, B.4
  • 19
    • 84908216690 scopus 로고    scopus 로고
    • On dataless hierarchical text classification
    • Y. Song and D. Roth. 2014. On dataless hierarchical text classification. In AAAI, pages 1579-1585.
    • (2014) AAAI , pp. 1579-1585
    • Song, Y.1    Roth, D.2
  • 20
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112.
    • (2014) NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 21
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semisupervised learning
    • J. Turian, L. Ratinov, and Y. Bengio. 2010. Word representations: A simple and general method for semisupervised learning. In ACL, pages 384-394.
    • (2010) ACL , pp. 384-394
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 22
    • 84894677741 scopus 로고    scopus 로고
    • Efficient learning on point sets
    • L. Xiong, B. Póczos, and J. G. Schneider. 2013. Efficient learning on point sets. In ICDM, pages 847-856.
    • (2013) ICDM , pp. 847-856
    • Xiong, L.1    Póczos, B.2    Schneider, J.G.3
  • 23
    • 84904549928 scopus 로고    scopus 로고
    • Question answering using enhanced lexical semantic models
    • W. Yih, M. Chang, C. Meek, and A. Pastusiak. 2013. Question answering using enhanced lexical semantic models. In ACL, pages 1744-1753.
    • (2013) ACL , pp. 1744-1753
    • Yih, W.1    Chang, M.2    Meek, C.3    Pastusiak, A.4
  • 24
    • 85026953115 scopus 로고    scopus 로고
    • Phrase type sensitive tensor indexing model for semantic composition
    • Y. Zhao, Z. Liu, and M. Sun. 2015. Phrase type sensitive tensor indexing model for semantic composition. In AAAI.
    • (2015) AAAI
    • Zhao, Y.1    Liu, Z.2    Sun, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.