메뉴 건너뛰기




Volumn 102, Issue 3, 2016, Pages 465-482

Learning to identify relevant studies for systematic reviews using random forest and external information

Author keywords

Classification; Inclusion prediction; Systematic review

Indexed keywords

DECISION TREES; HEURISTIC METHODS;

EID: 84959537001     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-015-5535-7     Document Type: Article
Times cited : (64)

References (26)
  • 1
    • 77957859521 scopus 로고    scopus 로고
    • Seventy-five trials and eleven systematic reviews a day: How will we ever keep up?
    • Bastian, H., Glasziou, P., & Chalmers, I. (2010). Seventy-five trials and eleven systematic reviews a day: How will we ever keep up? PLoS Medicine, 7(9), e1000,326.
    • (2010) PLoS Medicine , vol.7 , Issue.9
    • Bastian, H.1    Glasziou, P.2    Chalmers, I.3
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 34250744208 scopus 로고    scopus 로고
    • Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on machine learning, pp. 161–168. ACM, New York
    • Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on machine learning, pp. 161–168. ACM, New York.
  • 7
    • 69549134271 scopus 로고    scopus 로고
    • Cohen, A. M. (2008). Optimizing feature representation for automated systematic review work prioritization. In AMIA annual symposium proceedings, vol. 2008, p. 121. American Medical Informatics Association, New York
    • Cohen, A. M. (2008). Optimizing feature representation for automated systematic review work prioritization. In AMIA annual symposium proceedings, vol. 2008, p. 121. American Medical Informatics Association, New York
  • 8
    • 78650475103 scopus 로고    scopus 로고
    • Performance of support-vector-machine-based classification on 15 systematic review topics evaluated with the wss@ 95 measure
    • Cohen, A. M. (2011). Performance of support-vector-machine-based classification on 15 systematic review topics evaluated with the wss@ 95 measure. Journal of the American Medical Informatics Association, 18(1), 104–104.
    • (2011) Journal of the American Medical Informatics Association , vol.18 , Issue.1 , pp. 104
    • Cohen, A.M.1
  • 9
    • 84865241093 scopus 로고    scopus 로고
    • Studying the potential impact of automated document classification on scheduling a systematic review update
    • Cohen, A. M., Ambert, K., & McDonagh, M. (2012). Studying the potential impact of automated document classification on scheduling a systematic review update. BMC Medical Informatics and Decision Making, 12(1), 33.
    • (2012) BMC Medical Informatics and Decision Making , vol.12 , Issue.1 , pp. 33
    • Cohen, A.M.1    Ambert, K.2    McDonagh, M.3
  • 11
    • 0031047837 scopus 로고    scopus 로고
    • Systematic reviews: Synthesis of best evidence for clinical decisions
    • Cook, D. J., Mulrow, C. D., & Haynes, R. B. (1997). Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine, 126(5), 376–380.
    • (1997) Annals of Internal Medicine , vol.126 , Issue.5 , pp. 376-380
    • Cook, D.J.1    Mulrow, C.D.2    Haynes, R.B.3
  • 12
    • 84959491136 scopus 로고    scopus 로고
    • Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 155–164. ACM, New York
    • Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 155–164. ACM, New York
  • 14
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y., Schapire, R.E., et al. (1996). Experiments with a new boosting algorithm. In ICML, vol. 96, pp. 148–156
    • (1996) In ICML , vol.96 , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 69849112407 scopus 로고    scopus 로고
    • Kouznetsov, A., Matwin, S., Inkpen, D., Razavi, A. H., Frunza, O., Sehatkar, M., Seaward, L., & OBlenis, P. (2009). Classifying biomedical abstracts using committees of classifiers and collective ranking techniques. In Advances in artificial intelligence, pp. 224–228. Berlin: Springer
    • Kouznetsov, A., Matwin, S., Inkpen, D., Razavi, A. H., Frunza, O., Sehatkar, M., Seaward, L., & OBlenis, P. (2009). Classifying biomedical abstracts using committees of classifiers and collective ranking techniques. In Advances in artificial intelligence, pp. 224–228. Berlin: Springer
  • 20
    • 79951756007 scopus 로고    scopus 로고
    • Raeder, T., Hoens, T. R., & Chawla, N. V. (2010). Consequences of variability in classifier performance estimates. In IEEE 10th international conference on data mining (ICDM), 2010, pp. 421–430. IEEE
    • Raeder, T., Hoens, T. R., & Chawla, N. V. (2010). Consequences of variability in classifier performance estimates. In IEEE 10th international conference on data mining (ICDM), 2010, pp. 421–430. IEEE.
  • 22
    • 0015640298 scopus 로고
    • Co-citation in the scientific literature: A new measure of the relationship between two documents
    • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265–269.
    • (1973) Journal of the American Society for information Science , vol.24 , Issue.4 , pp. 265-269
    • Small, H.1
  • 23
    • 82955242438 scopus 로고    scopus 로고
    • Tomassetti, F., Rizzo, G., Vetro, A., Ardito, L., Torchiano, M., & Morisio, M. (2011). Linked data approach for selection process automation in systematic reviews. In 15th Annual Conference on Evaluation & Assessment in Software Engineering (EASE 2011), pp. 31–35. IET
    • Tomassetti, F., Rizzo, G., Vetro, A., Ardito, L., Torchiano, M., & Morisio, M. (2011). Linked data approach for selection process automation in systematic reviews. In 15th Annual Conference on Evaluation & Assessment in Software Engineering (EASE 2011), pp. 31–35. IET.
  • 24
    • 77956197516 scopus 로고    scopus 로고
    • Wallace, B. C., Small, K., Brodley, C. E., & Trikalinos, T. A. (2010). Active learning for biomedical citation screening. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 173–182. ACM, New York
    • Wallace, B. C., Small, K., Brodley, C. E., & Trikalinos, T. A. (2010). Active learning for biomedical citation screening. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 173–182. ACM, New York
  • 25
    • 84874086932 scopus 로고    scopus 로고
    • Who should label what? Instance allocation in multiple expert active learning
    • Wallace, B. C., Small, K., Brodley, C. E., & Trikalinos, T. A. (2011). Who should label what? Instance allocation in multiple expert active learning. In SDM, pp. 176–187.
    • (2011) In SDM , pp. 176-187
    • Wallace, B.C.1    Small, K.2    Brodley, C.E.3    Trikalinos, T.A.4
  • 26


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.