-
1
-
-
21844444960
-
Online choice of active learning algorithms
-
Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning algorithms. J. Mach. Learn. Res., 5:255-291, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 255-291
-
-
Baram, Y.1
El-Yaniv, R.2
Luz, K.3
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
-
(1998)
COLT
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
4
-
-
0030854892
-
Formulating questions and locating primary studies for inclusion in systematic reviews
-
Sep
-
C. Counsell. Formulating questions and locating primary studies for inclusion in systematic reviews. Ann. Intern. Med., 127:380-387, Sep 1997.
-
(1997)
Ann. Intern. Med.
, vol.127
, pp. 380-387
-
-
Counsell, C.1
-
5
-
-
70349254685
-
Proactive learning: Cost-sensitive active learning with multiple imperfect oracles
-
P. Donmez and J. G. Carbonell. Proactive learning: cost-sensitive active learning with multiple imperfect oracles. In CIKM, pages 619-628, 2008.
-
(2008)
CIKM
, pp. 619-628
-
-
Donmez, P.1
Carbonell, J.G.2
-
6
-
-
57349122015
-
Learning from labeled features using generalized expectation criteria
-
G. Druck, G. S. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, pages 595-602, 2009.
-
(2009)
SIGIR
, pp. 595-602
-
-
Druck, G.1
Mann, G.S.2
McCallum, A.3
-
7
-
-
77949519575
-
Active learning by labeling features
-
G. Druck, B. Settles, and A. McCallum. Active learning by labeling features. In EMNLP, pages 81-90, 2009.
-
(2009)
EMNLP
, pp. 81-90
-
-
Druck, G.1
Settles, B.2
McCallum, A.3
-
8
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. In Machine Learning, volume 28, pages 133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
10
-
-
33344465511
-
Biomedical language processing: What's beyond pubmed?
-
March
-
L. Hunter and K. B. Cohen. Biomedical language processing: What's beyond pubmed? Mol Cell, 21(5):589-594, March 2006.
-
(2006)
Mol Cell
, vol.21
, Issue.5
, pp. 589-594
-
-
Hunter, L.1
Cohen, K.B.2
-
12
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Machine Learning: ECML-98, pages 137-142, 1998.
-
(1998)
Machine Learning: ECML-98
, pp. 137-142
-
-
Joachims, T.1
-
13
-
-
0029193061
-
Evaluating and optimizing autonomous text classification systems
-
D. Lewis. Evaluating and optimizing autonomous text classification systems. In SIGIR, pages 246-254, 1995.
-
(1995)
SIGIR
, pp. 246-254
-
-
Lewis, D.1
-
14
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In SIGIR, pages 3-12, 1994.
-
(1994)
SIGIR
, pp. 3-12
-
-
Lewis, D.1
Gale, W.2
-
15
-
-
0000314722
-
Employing EM and pool-based active learning for text classification
-
San Francisco, CA, USA
-
A. Mccallum and K. Nigam. Employing EM and pool-based active learning for text classification. In ICML, pages 350-358, San Francisco, CA, USA, 1998.
-
(1998)
ICML
, pp. 350-358
-
-
Mccallum, A.1
Nigam, K.2
-
17
-
-
0000684645
-
Breast cancer diagnosis and prognosis via linear programming
-
W. N. S. O. L. Mangasarian and W. W. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43:570-577, 1995.
-
(1995)
Operations Research
, vol.43
, pp. 570-577
-
-
Mangasarian, W.N.S.O.L.1
Wolberg, W.W.2
-
18
-
-
33750360046
-
Balancing exploration and exploitation: A new algorithm for active machine learning
-
T. Osugi, D. Kun, and S. Scott. Balancing exploration and exploitation: A new algorithm for active machine learning. In ICDM, pages 330-337, 2005.
-
(2005)
ICDM
, pp. 330-337
-
-
Osugi, T.1
Kun, D.2
Scott, S.3
-
19
-
-
36448950134
-
An interactive algorithm for asking and incorporating feature feedback into support vector machines
-
H. Raghavan and J. Allan. An interactive algorithm for asking and incorporating feature feedback into support vector machines. In SIGIR, pages 79-86, 2007.
-
(2007)
SIGIR
, pp. 79-86
-
-
Raghavan, H.1
Allan, J.2
-
20
-
-
33747134006
-
Active learning with feedback on features and instances
-
H. Raghavan, O. Madani, and R. Jones. Active learning with feedback on features and instances. J. Mach. Learn. Res., 7:1655-1686, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1655-1686
-
-
Raghavan, H.1
Madani, O.2
Jones, R.3
-
21
-
-
34547628187
-
Performance thresholding in practical text classification
-
H. New York, NY, USA
-
V. E. Schütze, H. and J. Pedersen. Performance thresholding in practical text classification. In CIKM, pages 662-671, New York, NY, USA, 2006.
-
(2006)
CIKM
, pp. 662-671
-
-
Schütze, V.E.1
Pedersen, J.2
-
22
-
-
68949137209
-
Active learning literature survey
-
University of Wisconsin-Madison
-
B. Settles. Active learning literature survey. Technical Report 1648, University of Wisconsin-Madison, 2009.
-
(2009)
Technical Report 1648
-
-
Settles, B.1
-
23
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improving data quality and data mining using multiple, noisy labelers. In KDD, pages 614-622, 2008.
-
(2008)
KDD
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.G.3
-
24
-
-
71149105884
-
Uncertainty sampling and transductive experimental design for active dual supervision
-
V. Sindhwani, P. Melville, and R. D. Lawrence. Uncertainty sampling and transductive experimental design for active dual supervision. In ICML, pages 120-128, 2009.
-
(2009)
ICML
, pp. 120-128
-
-
Sindhwani, V.1
Melville, P.2
Lawrence, R.D.3
-
25
-
-
77956208474
-
A web survey on the use of active learning to support annotation of text data
-
June
-
K. Tomanek and F. Olsson. A web survey on the use of active learning to support annotation of text data. In NAACL Workshop on AL for NLP, pages 45-48, June 2009.
-
(2009)
NAACL Workshop on AL for NLP
, pp. 45-48
-
-
Tomanek, K.1
Olsson, F.2
-
26
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In J. Mach. Learn. Res., pages 999-1006, 2000.
-
(2000)
J. Mach. Learn. Res.
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
28
-
-
33750905259
-
Decision curve analysis: A novel method for evaluating prediction models
-
A. J. Vickers and E. B. Elkin. Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making, 26:565-574, 2006.
-
(2006)
Medical Decision Making
, vol.26
, pp. 565-574
-
-
Vickers, A.J.1
Elkin, E.B.2
-
29
-
-
77349087831
-
Semi-automated screening of biomedical citations for systematic reviews
-
B. C. Wallace, T. A. Trikalinos, J. Lau, C. E. Brodley, and C. H. Schmid. Semi-automated screening of biomedical citations for systematic reviews. BMC Bioinformatics, 11, 2010.
-
BMC Bioinformatics
, vol.11
, pp. 2010
-
-
Wallace, B.C.1
Trikalinos, T.A.2
Lau, J.3
Brodley, C.E.4
Schmid, C.H.5
|