-
1
-
-
78650418599
-
Arsenic cadmium, and lead pollution and uptake by rice (oryza sativa l) grown in greenhouse
-
Lei, M., Tie, B., Williams, P. N., Zheng, Y., & Huang, Y. Arsenic, Cadmium, and Lead Pollution and Uptake by Rice (Oryza Sativa L.) Grown in Greenhouse. J Soil Sediment. 11, 115-123 (2011).
-
(2011)
J Soil Sediment.
, vol.11
, pp. 115-123
-
-
Lei, M.1
Tie, B.2
Williams, P.N.3
Zheng, Y.4
Huang, Y.5
-
2
-
-
84887137011
-
Effect of lead pollution on soil microbiological index under spinach (spinacia oleracea l) cultivation
-
Hassan, W., & David, J. Effect of Lead Pollution On Soil Microbiological Index Under Spinach (Spinacia Oleracea L.) Cultivation. J Soil Sediment. 14, 44-59 (2014).
-
(2014)
J Soil Sediment.
, vol.14
, pp. 44-59
-
-
Hassan, W.1
David, J.2
-
3
-
-
84891657139
-
Effect of mine tailing on the spatial variability of soil nematodes from lead pollution in la union (Spain)
-
Rodriguez Martin, J. A., et al. Effect of Mine Tailing On the Spatial Variability of Soil Nematodes From Lead Pollution in La Union (Spain). Sci Total Environ. 473-474, 518-529 (2014).
-
(2014)
Sci Total Environ.
, vol.473-474
, pp. 518-529
-
-
Rodriguez Martin, J.A.1
-
4
-
-
67249110383
-
-
World Health Organization. Available at: (Accessed: 17th January 2016
-
World Health Organization. Exposure to Lead: A Major Public Health Concern (2010). Available at: http://www.who.int/ipcs/ features/lead.pdf. (Accessed: 17th January 2016).
-
(2010)
Exposure to Lead: A Major Public Health Concern
-
-
-
5
-
-
22144464444
-
Low-Level environmental lead exposure and children?s intellectual function: An international pooled analysis
-
P, L. B., R, H., & J, K.
-
P, L. B., R, H., & J, K. Low-Level Environmental Lead Exposure and Children?s Intellectual Function: An International Pooled Analysis. Environ Health Persp. 113(7), 894-899 (2005).
-
(2005)
Environ Health Persp.
, vol.113
, Issue.7
, pp. 894-899
-
-
-
6
-
-
84875365196
-
-
World Health Organization. Available at: (Accessed: 17th January 2016
-
World Health Organization. Brief Guide to Analytical Methods for Measuring Lead in Blood (2011). Available at: http://apps.who.int/ iris/bitstream/10665/77912/1/9789241502139-Eng.pdf. (Accessed: 17th January 2016).
-
(2011)
Brief Guide to Analytical Methods for Measuring Lead in Blood
-
-
-
7
-
-
84874251072
-
Continuing issues with lead: Recent advances in detection
-
Deibler, K., & Basu, P. Continuing Issues with Lead: Recent Advances in Detection. Eur J Inorg Chem. 2013, 1086-1096 (2013).
-
(2013)
Eur J Inorg Chem.
, vol.2013
, pp. 1086-1096
-
-
Deibler, K.1
Basu, P.2
-
8
-
-
78349306046
-
Bismuth-Modified electrodes for lead detection
-
Arduini, F., Calvo, J. Q., Palleschi, G., Moscone, D., & Amine, A. Bismuth-Modified Electrodes for Lead Detection. Trac-Trend Anal Chem 29, 1295-1304 (2010).
-
(2010)
Trac-Trend Anal Chem
, vol.29
, pp. 1295-1304
-
-
Arduini, F.1
Calvo, J.Q.2
Palleschi, G.3
Moscone, D.4
Amine, A.5
-
9
-
-
33244469462
-
Gold-Based screen-printed sensor for detection of trace lead
-
Laschi, S., Palchetti, I., & Mascini, M. Gold-Based Screen-Printed Sensor for Detection of Trace Lead. Sensors and Actuators B: Chemical 114, 460-465 (2006).
-
(2006)
Sensors and Actuators B: Chemical
, vol.114
, pp. 460-465
-
-
Laschi, S.1
Palchetti, I.2
Mascini, M.3
-
10
-
-
20444449947
-
Mercury-Free sono-Electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-Doped diamond electrodes
-
Kruusma, J., Banks, C., & Compton, R. Mercury-Free Sono-Electroanalytical Detection of Lead in Human Blood by Use of Bismuth-Film-Modified Boron-Doped Diamond Electrodes. Anal Bioanal Chem. 379, (2004).
-
(2004)
Anal Bioanal Chem.
, vol.379
-
-
Kruusma, J.1
Banks, C.2
Compton, R.3
-
11
-
-
0038136599
-
Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-Assembled monolayer on mesoporous silica (samms)
-
Yantasee, W., Lin, Y., Zemanian, T. S., & Fryxell, G. E. Voltammetric Detection of Lead(ii) and Mercury(ii) Using a Carbon Paste Electrode Modified with Thiol Self-Assembled Monolayer On Mesoporous Silica (Samms). The Analyst. 128, 467-472 (2003).
-
(2003)
The Analyst.
, vol.128
, pp. 467-472
-
-
Yantasee, W.1
Lin, Y.2
Zemanian, T.S.3
Fryxell, G.E.4
-
12
-
-
32644437420
-
Detection of trace levels of pb2+ in tap water at boron-Doped diamond electrodes with anodic stripping voltammetry
-
Dragoe, D., et al. Detection of Trace Levels of Pb2+ in Tap Water at Boron-Doped Diamond Electrodes with Anodic Stripping Voltammetry. Electrochim Acta. 51, 2437-2441 (2006).
-
(2006)
Electrochim Acta.
, vol.51
, pp. 2437-2441
-
-
Dragoe, D.1
-
13
-
-
84862969844
-
Sno2 reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference
-
Wei, Y., et al. Sno2 Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(Ii), Lead(Ii), Copper(Ii), and Mercury(Ii): An Interesting Favorable Mutual Interference. J Phys Chem C. 116, 1034-1041 (2012).
-
(2012)
J Phys Chem C.
, vol.116
, pp. 1034-1041
-
-
Wei, Y.1
-
14
-
-
33846263073
-
Electrochemical detection of parts-per-billion lead via an electrode-bound dnazyme assembly
-
Xiao, Y., Rowe, A. A., & Plaxco, K. W. Electrochemical Detection of Parts-Per-Billion Lead Via an Electrode-Bound Dnazyme Assembly. J Am Chem Soc. 129, 262-263 (2007).
-
(2007)
J Am Chem Soc.
, vol.129
, pp. 262-263
-
-
Xiao, Y.1
Rowe, A.A.2
Plaxco, K.W.3
-
15
-
-
76849107037
-
Lead(II) Induced allosteric g-quadruplex dnazyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective pb2+ detection
-
Li, T., Wang, E., & Dong, S. Lead(Ii)-Induced Allosteric G-Quadruplex Dnazyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal Chem. 82, 1515-1520 (2010).
-
(2010)
Anal Chem.
, vol.82
, pp. 1515-1520
-
-
Li, T.1
Wang, E.2
Dong, S.3
-
16
-
-
84857408438
-
Turn-On fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene
-
Fu, X., et al. " Turn-On? Fluorescence Detection of Lead Ions Based On Accelerated Leaching of Gold Nanoparticles On the Surface of Graphene. Acs Appl Mater Inter. 4, 1080-1086 (2012).
-
(2012)
Acs Appl Mater Inter.
, vol.4
, pp. 1080-1086
-
-
Fu, X.1
-
17
-
-
84871795689
-
Detection of lead (II) with a turn-on fluorescent biosensor based on energy transfer from cdse/zns quantum dots to graphene oxide
-
Li, M., Zhou, X., Guo, S., & Wu, N. Detection of Lead (Ii) with a " Turn-On? Fluorescent Biosensor Based On Energy Transfer From Cdse/Zns Quantum Dots to Graphene Oxide. Biosens Bioelectron. 43, 69-74 (2013).
-
(2013)
Biosens Bioelectron.
, vol.43
, pp. 69-74
-
-
Li, M.1
Zhou, X.2
Guo, S.3
Wu, N.4
-
18
-
-
77957133380
-
A lead(II)-Driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity
-
Li, T., Dong, S., & Wang, E. A Lead(Ii)-Driven Dna Molecular Device for Turn-On Fluorescence Detection of Lead(Ii) Ion with High Selectivity and Sensitivity. J Am Chem Soc. 132, 13156-13157 (2010).
-
(2010)
J Am Chem Soc.
, vol.132
, pp. 13156-13157
-
-
Li, T.1
Dong, S.2
Wang, E.3
-
19
-
-
79957494324
-
Metal ion-modulated graphene-Dnazyme interactions: Design of a nanoprobe for fluorescent detection of lead (II) ions with high sensitivity selectivity and tunable dynamic range
-
Wen, Y., et al. Metal Ion-Modulated Graphene-Dnazyme Interactions: Design of a Nanoprobe for Fluorescent Detection of Lead (ii) Ions with High Sensitivity, Selectivity and Tunable Dynamic Range. Chem Commun. 47, 6278 (2011).
-
(2011)
Chem Commun.
, vol.47
, pp. 6278
-
-
Wen, Y.1
-
20
-
-
64649104306
-
Highly selective DNA-based sensor for lead(II) and mercury(II) ions
-
Liu, C., Huang, C., & Chang, H. Highly Selective Dna-Based Sensor for Lead(Ii) and Mercury(Ii) Ions. Anal Chem. 81, 2383-2387 (2009).
-
(2009)
Anal Chem.
, vol.81
, pp. 2383-2387
-
-
Liu, C.1
Huang, C.2
Chang, H.3
-
21
-
-
54849431963
-
Label-Free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and dnazyme
-
Wang, Z., Lee, J. H., & Lu, Y. Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by Using Gold Nanoparticles and Dnazyme. Adv Mater. 20, 3263-3267 (2008).
-
(2008)
Adv Mater.
, vol.20
, pp. 3263-3267
-
-
Wang, Z.1
Lee, J.H.2
Lu, Y.3
-
22
-
-
79959962526
-
Graphene-Dnazyme based biosensor for amplified fluorescence turn-on detection of pb2+ with a high selectivity
-
Zhao, X., et al. Graphene-Dnazyme Based Biosensor for Amplified Fluorescence " Turn-On? Detection of Pb2+ with a High Selectivity. Anal Chem. 83, 5062-5066 (2011).
-
(2011)
Anal Chem.
, vol.83
, pp. 5062-5066
-
-
Zhao, X.1
-
23
-
-
84891349862
-
High-Performance flexible graphene aptasensor for mercury detection in mussels
-
An, J. H., Park, S. J., Kwon, O. S., Bae, J., & Jang, J. High-Performance Flexible Graphene Aptasensor for Mercury Detection in Mussels. Acs Nano. 7, 10563-10571 (2013).
-
(2013)
Acs Nano.
, vol.7
, pp. 10563-10571
-
-
An, J.H.1
Park, S.J.2
Kwon, O.S.3
Bae, J.4
Jang, J.5
-
24
-
-
78650592644
-
Label-Free biosensors based on aptamer-modified graphene field-Effect transistors
-
Ohno, Y., Maehashi, K., & Matsumoto, K. Label-Free Biosensors Based On Aptamer-Modified Graphene Field-Effect Transistors. J Am Chem Soc. 132, 18012-18013 (2010).
-
(2010)
J Am Chem Soc.
, vol.132
, pp. 18012-18013
-
-
Ohno, Y.1
Maehashi, K.2
Matsumoto, K.3
-
25
-
-
84893951969
-
Precise and ultrafast molecular sieving through graphene oxide membranes
-
Joshi, R. K., et al. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes. Science. 343, 752-754 (2014).
-
(2014)
Science.
, vol.343
, pp. 752-754
-
-
Joshi, R.K.1
-
26
-
-
84870806192
-
Reduced graphene oxide field-Effect transistor for label-free femtomolar protein detection
-
Kim, D., et al. Reduced Graphene Oxide Field-Effect Transistor for Label-Free Femtomolar Protein Detection. Biosens Bioelectron. 41, 621-626 (2013).
-
(2013)
Biosens Bioelectron.
, vol.41
, pp. 621-626
-
-
Kim, D.1
-
27
-
-
84867443349
-
Ultrasensitive flexible graphene based field-Effect transistor (fet)-Type bioelectronic nose
-
Park, S J., et Al. Ultrasensitive Flexible Graphene Based Field-Effect Transistor (Fet)-Type Bioelectronic Nose. Nano Lett. 12, 5082-5090 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 5082-5090
-
-
Park, S.J.1
-
28
-
-
84897005594
-
Ultrasensitive label-free detection of pna-DNA hybridization by reduced graphene oxide field-Effect transistor biosensor
-
Cai, B., et al. Ultrasensitive Label-Free Detection of Pna-Dna Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. Acs Nano. 8, 2632-2638 (2014).
-
(2014)
Acs Nano.
, vol.8
, pp. 2632-2638
-
-
Cai, B.1
-
29
-
-
84879608555
-
The electrical detection of lead ions using gold-nanoparticle-and dnazyme-functionalized graphene device
-
Wen, Y., et al. The Electrical Detection of Lead Ions Using Gold-Nanoparticle-And Dnazyme-Functionalized Graphene Device. Adv Healthc Mater. 2, 271-274 (2013).
-
(2013)
Adv Healthc Mater.
, vol.2
, pp. 271-274
-
-
Wen, Y.1
-
30
-
-
84899798919
-
Graphene-and aptamer-based electrochemical biosensor
-
Xu, K., et al. Graphene-And Aptamer-Based Electrochemical Biosensor. Nanotechnology (2014).
-
(2014)
Nanotechnology
-
-
Xu, K.1
-
31
-
-
36248936102
-
Dissecting metal ion-Dependent folding and catalysis of a single dnazyme
-
Kim, H., Rasnik, I., Liu, J., Ha, T., & Lu, Y. Dissecting Metal Ion-Dependent Folding and Catalysis of a Single Dnazyme. Nat Chem Biol. 3, 763-768 (2007).
-
(2007)
Nat Chem Biol.
, vol.3
, pp. 763-768
-
-
Kim, H.1
Rasnik, I.2
Liu, J.3
Ha, T.4
Lu, Y.5
-
32
-
-
84928399215
-
Childhood lead exposure in an industrial town in China: Coupling stable isotope ratios with bioaccessible lead
-
Li, H., Chen, K., Juhasz, A. L., Huang, L., & Ma, L. Q. Childhood Lead Exposure in an Industrial Town in China: Coupling Stable Isotope Ratios with Bioaccessible Lead. Environ Sci Technol. 49, 5080-5087 (2015).
-
(2015)
Environ Sci Technol.
, vol.49
, pp. 5080-5087
-
-
Li, H.1
Chen, K.2
Juhasz, A.L.3
Huang, L.4
Ma, L.Q.5
|