-
1
-
-
77249160725
-
Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors
-
10.1039/b921253a
-
White R, Rowe A and Plaxco K 2010 Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors Analyst 135 589-94
-
(2010)
Analyst
, vol.135
, pp. 589-594
-
-
White, R.1
Rowe, A.2
Plaxco, K.3
-
2
-
-
38849181543
-
Aptamers as molecular recognition elements for electrical nanobiosensors
-
10.1007/s00216-007-1643-y 1618-2642
-
Lee J, So H, Jeon E, Chang H, Won K and Kim Y 2008 Aptamers as molecular recognition elements for electrical nanobiosensors Anal. Bioanal. Chem. 390 1023-32
-
(2008)
Anal. Bioanal. Chem.
, vol.390
, pp. 1023-1032
-
-
Lee, J.1
So, H.2
Jeon, E.3
Chang, H.4
Won, K.5
Kim, Y.6
-
3
-
-
80052620961
-
Quantum-dot-based aptamer beacon for the detection of potassium ions
-
10.1109/TNANO.2010.2091967 1536-125X
-
Wu T, Biswas S, Dutta M and Stroscio M 2011 Quantum-dot-based aptamer beacon for the detection of potassium ions IEEE Trans. Nanotechnol. 10 991-5
-
(2011)
IEEE Trans. Nanotechnol.
, vol.10
, pp. 991-995
-
-
Wu, T.1
Biswas, S.2
Dutta, M.3
Stroscio, M.4
-
4
-
-
84875710190
-
Quantum-dot-based aptamer beacons for k+ detection
-
10.1109/JSEN.2012.2229387 1530-437X
-
Wu T C, Zhao G J, Lu H, Dutta M and Stroscio M A 2013 Quantum-dot-based aptamer beacons for k+ detection IEEE Sensors J. 13 1549-53
-
(2013)
IEEE Sensors J.
, vol.13
, pp. 1549-1553
-
-
Wu, T.C.1
Zhao, G.J.2
Lu, H.3
Dutta, M.4
Stroscio, M.A.5
-
5
-
-
77949343628
-
Label-free electrical detection using carbon nanotube-based biosensors
-
10.3390/s90705368 0746-9462
-
Maehashi K and Matsumoto K 2009 Label-free electrical detection using carbon nanotube-based biosensors Sensors 9 5368-78
-
(2009)
Sensors
, vol.9
, pp. 5368-5378
-
-
Maehashi, K.1
Matsumoto, K.2
-
6
-
-
84870821587
-
Label-free detection of DNA hybridization using transistors based on CVD grown graphene
-
10.1016/j.bios.2012.07.059 0956-5663
-
Chen T, Phan T, Hsu C, Lee Y, Wang J, Wei K, Lin C and Li L 2013 Label-free detection of DNA hybridization using transistors based on CVD grown graphene Biosens. Bioelectron. 41 103-9
-
(2013)
Biosens. Bioelectron.
, vol.41
, pp. 103-109
-
-
Chen, T.1
Phan, T.2
Hsu, C.3
Lee, Y.4
Wang, J.5
Wei, K.6
Lin, C.7
Li, L.8
-
7
-
-
84860479188
-
Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles
-
10.1021/ac3000336
-
Chen K, Lu G, Chang J, Mao S, Yu K, Cui S and Chen J 2012 Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles Anal. Chem. 84 4057-4062
-
(2012)
Anal. Chem.
, vol.84
, pp. 4057-4062
-
-
Chen, K.1
Lu, G.2
Chang, J.3
Mao, S.4
Yu, K.5
Cui, S.6
Chen, J.7
-
8
-
-
79952976809
-
Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films
-
10.1021/nn103043v
-
Sudibya H G, He Q, Zhang H and Chen P 2011 Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films ACS Nano 5 1990-4
-
(2011)
ACS Nano
, vol.5
, pp. 1990-1994
-
-
Sudibya, H.G.1
He, Q.2
Zhang, H.3
Chen, P.4
-
10
-
-
84876056022
-
Optical detection of lead(II) ions using DNA-based nanosensor
-
10.1109/JSEN.2013.2241757 1530-437X
-
Brenneman K, Poduri S, Stroscio M and Dutta M 2013 Optical detection of lead(II) ions using DNA-based nanosensor IEEE Sensors J. 13 1783-6
-
(2013)
IEEE Sensors J.
, vol.13
, pp. 1783-1786
-
-
Brenneman, K.1
Poduri, S.2
Stroscio, M.3
Dutta, M.4
-
11
-
-
64649104306
-
Highly selective DNA-based sensor for lead(II) and mercury(II) ions
-
10.1021/ac8022185
-
Liu C, Huang C and Chang H 2009 Highly selective DNA-based sensor for lead(II) and mercury(II) ions Anal. Chem. 81 2383-7
-
(2009)
Anal. Chem.
, vol.81
, pp. 2383-2387
-
-
Liu, C.1
Huang, C.2
Chang, H.3
-
12
-
-
80455158408
-
Kinetics and mechanism of conformational changes in a G-Quadruplex of thrombin-binding aptamer induced by Pb2+
-
10.1021/jp2074489 1089-5647 B
-
Liu W, Fu Y, Zheng B, Cheng S, Li W, Lau T and Liang H 2011 Kinetics and mechanism of conformational changes in a G-Quadruplex of thrombin-binding aptamer induced by Pb2+ J. Phys. Chem. B 115 13051-6
-
(2011)
J. Phys. Chem.
, vol.115
, pp. 13051-13056
-
-
Liu, W.1
Fu, Y.2
Zheng, B.3
Cheng, S.4
Li, W.5
Lau, T.6
Liang, H.7
-
13
-
-
29844453471
-
A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement
-
10.1021/ja056555h
-
Xiao Y, Piorek B D, Plaxco K W and Heeger A J 2005 A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement J. Am. Chem. Soc. 127 17990-1
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 17990-17991
-
-
Xiao, Y.1
Piorek, B.D.2
Plaxco, K.W.3
Heeger, A.J.4
-
14
-
-
33644942097
-
An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids
-
10.1021/ja056957p
-
Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J and Plaxco K W 2006 An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids J. Am. Chem. Soc. 128 3138-9
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 3138-3139
-
-
Baker, B.R.1
Lai, R.Y.2
Wood, M.S.3
Doctor, E.H.4
Heeger, A.J.5
Plaxco, K.W.6
-
15
-
-
30744473476
-
Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor
-
10.1021/ja053121d
-
Radi A, Sánchez J L A, Baldrich E and OSullivan C K 2006 Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor J. Am. Chem. Soc. 128 117-24
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 117-124
-
-
Radi, A.1
Sánchez, J.L.A.2
Baldrich, E.3
Osullivan, C.K.4
-
16
-
-
70349953612
-
Low level environmental lead exposure - A continuing challenge
-
Rossi E 2008 Low level environmental lead exposure - a continuing challenge Clin. Biochem. Rev. 29 63-70
-
(2008)
Clin. Biochem. Rev.
, vol.29
, pp. 63-70
-
-
Rossi, E.1
-
17
-
-
4744361075
-
Case records of the massachusetts general hospital.Weekly clinicopathological exercises. Laboratory reference values
-
10.1056/NEJMcpc049016 0028-4793
-
Kratz A, Ferraro M, Sluss P M and Lewandrowski K B 2004 Case records of the massachusetts general hospital.weekly clinicopathological exercises. laboratory reference values N Engl. J. Med. 351 1548-63
-
(2004)
N Engl. J. Med.
, vol.351
, pp. 1548-1563
-
-
Kratz, A.1
Ferraro, M.2
Sluss, P.M.3
Lewandrowski, K.B.4
-
19
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
10.1126/science.1102896
-
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Electric field effect in atomically thin carbon films Science 306 666-9
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.1
Geim, A.2
Morozov, S.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.6
Grigorieva, I.7
Firsov, A.8
-
20
-
-
57349090160
-
Current saturation in zero-bandgap, topgated graphene field-effect transistors
-
10.1038/nnano.2008.268
-
Meric I, Han M, Young A, Ozyilmaz B, Kim P and Shepard K 2008 Current saturation in zero-bandgap, topgated graphene field-effect transistors Nat. Nanotechnology 3 654-9
-
(2008)
Nat. Nanotechnology
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.2
Young, A.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.6
-
21
-
-
63149118636
-
Effective doping of single-layer graphene from underlying SiO2 substrates
-
10.1109/IWCE.2012.6242868 B 115402
-
Shi Y, Dong X, Chen P, Wang J and Li L 2009 Effective doping of single-layer graphene from underlying SiO2 substrates Phys. Rev. B 79 115402
-
(2009)
Phys. Rev.
, vol.79
-
-
Shi, Y.1
Dong, X.2
Chen, P.3
Wang, J.4
Li, L.5
-
22
-
-
84874930629
-
Manipulating the electronic and chemical properties of graphene via molecular functionalization
-
10.1016/j.progsurf.2013.02.001 0079-6816
-
Mao H, Lu Y, Lin J, Zhong S, Wee A and Chen W 2013 Manipulating the electronic and chemical properties of graphene via molecular functionalization Prog. Surf. Sci. 88 132-59
-
(2013)
Prog. Surf. Sci.
, vol.88
, pp. 132-159
-
-
Mao, H.1
Lu, Y.2
Lin, J.3
Zhong, S.4
Wee, A.5
Chen, W.6
-
23
-
-
77955369939
-
Nanoelectronic biosensors based on CVD grown graphene
-
10.1039/c0nr00142b
-
Huang Y, Dong X, Shi Y, Li C, Li L and Chen P 2010 Nanoelectronic biosensors based on CVD grown graphene Nanoscale 2 1485-8
-
(2010)
Nanoscale
, vol.2
, pp. 1485-1488
-
-
Huang, Y.1
Dong, X.2
Shi, Y.3
Li, C.4
Li, L.5
Chen, P.6
-
24
-
-
79951491418
-
Contacting graphene
-
10.1109/NMDC.2010.5652331 053103
-
Robinson J, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R and Snyder D 2011 Contacting graphene Appl. Phys. Lett. 98 053103
-
(2011)
Appl. Phys. Lett.
, vol.98
-
-
Robinson, J.1
Labella, M.2
Zhu, M.3
Hollander, M.4
Kasarda, R.5
Hughes, Z.6
Trumbull, K.7
Cavalero, R.8
Snyder, D.9
-
26
-
-
84899862083
-
-
http://www.horiba.com/us/en/application/material-property- characterization/water-analysis/water-quality-electrochemistry-instrumentation/ compact/details/b-731-laquatwin-compact-potassium-ion-meter-17163/
-
-
-
-
27
-
-
84899853910
-
-
http://www.horiba.com/application/material-property-characterization/ water-analysis/water-quality-electrochemistry-instrumentation/ electrodes-accessories/ion-electrodes/details/lead-ion-electrode-8008-10c-9519/
-
-
-
-
28
-
-
84899786934
-
-
http://www.thermoscientific.com/content/dam/tfs/ATG/EPD/EPD%20Documents/ Product%20Manuals%20#38;%20Specifications/ Water%20Analysis%20Instruments%20and%20Supplies/ Lab%20Electrodes%20and%20Sensors/Ion%20Selective%20Electrodes/D17172.pdf
-
-
-
-
29
-
-
33845680548
-
Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin
-
10.1016/j.bioelechem.2006.03.012
-
Hianik T, Ostatna V, Sonlajtnerova M and Grman I 2007 Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin Bioelectrochemistry 70 127-33
-
(2007)
Bioelectrochemistry
, vol.70
, pp. 127-133
-
-
Hianik, T.1
Ostatna, V.2
Sonlajtnerova, M.3
Grman, I.4
|