메뉴 건너뛰기




Volumn 46, Issue 3, 2015, Pages 323-339

Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

Author keywords

Classification and regression trees; Predictive mapping; Random forest; Stochastic gradient boosting; Tree canopy cover

Indexed keywords

DECISION TREES; FORESTRY; MEAN SQUARE ERROR; STOCHASTIC MODELS;

EID: 84959283543     PISSN: 00455067     EISSN: 12086037     Source Type: Journal    
DOI: 10.1139/cjfr-2014-0562     Document Type: Article
Times cited : (135)

References (53)
  • 1
    • 62749087773 scopus 로고    scopus 로고
    • A first map of tropical Africa’s above-ground biomass derived from satellite imagery
    • Baccini, A., Laporte, N., Goetz, S.J., Sun, M., and Dong, H. 2008. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 3(4): 045011. doi:10.1088/1748-9326/3/4/045011.
    • (2008) Environ. Res. Lett , vol.3 , Issue.4
    • Baccini, A.1    Laporte, N.2    Goetz, S.J.3    Sun, M.4    Dong, H.5
  • 3
    • 33845754355 scopus 로고    scopus 로고
    • Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models
    • Baker, C., Lawrence, R., Montagne, C., and Patten, D. 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2): 465-474. doi:10.1672/0277-5212(2006)26[465:MWARAU]2.0.CO;2.
    • (2006) Wetlands , vol.26 , Issue.2 , pp. 465-474
    • Baker, C.1    Lawrence, R.2    Montagne, C.3    Patten, D.4
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Mach. Learn. 45: 5-32. doi:10.1023/A:1010933404324.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotype mapping using airborne hyperspectral imagery
    • Chan, J.C.W., and Paelinckx, D. 2008. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotype mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112(6): 2999-3011. doi:10.1016/j.rse.2008.02.011.
    • (2008) Remote Sens. Environ , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 9
  • 11
    • 34247115449 scopus 로고    scopus 로고
    • Boosted trees for ecological modeling and prediction
    • De’ath, G. 2007. Boosted trees for ecological modeling and prediction. Ecology, 88(1): 243-251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2.
    • (2007) Ecology , vol.88 , Issue.1 , pp. 243-251
    • De’Ath, G.1
  • 12
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: A powerful yet simple technique for ecological data analysis
    • De’ath, G., and Fabricius, K.E. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11): 3178-3192. doi:10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2.
    • (2000) Ecology , vol.81 , Issue.11 , pp. 3178-3192
    • De’Ath, G.1    Fabricius, K.E.2
  • 13
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith, J., Leathwick, J.R., and Hastie, T. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-13. doi:10.1111/j.1365-2656.2008.01390.x.
    • (2008) J. Anim. Ecol , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 14
    • 67349136470 scopus 로고    scopus 로고
    • Gradient modeling of conifer species using random forests
    • Evans, J., and Cushman, S. 2009. Gradient modeling of conifer species using random forests. Landsc. Ecol. 24: 673-683. doi:10.1007/s10980-009-9341-0.
    • (2009) Landsc. Ecol , vol.24 , pp. 673-683
    • Evans, J.1    Cushman, S.2
  • 15
    • 84902652631 scopus 로고    scopus 로고
    • Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting
    • Filippi, A.M., Guneralp, İ., and Randall, J. 2014. Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting. Remote Sens. Lett. 5(5): 432-441. doi:10.1080/2150704X.2014.915070.
    • (2014) Remote Sens. Lett. , vol.5 , Issue.5 , pp. 432-441
    • Filippi, A.M.1    Guneralp, İ.2    Randall, J.3
  • 17
    • 84959303183 scopus 로고    scopus 로고
    • Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments
    • Edited by W. McWilliams and F.A. Roesch. USDA Forest Service, Southern Research Station, Asheville, North Carolina, e-Gen. Tech. Rep. SRS-157
    • Frescino, T.S., and Moisen, G.G. 2012. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments. In Proceedings of Monitoring Across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists. Edited by W. McWilliams and F.A. Roesch. USDA Forest Service, Southern Research Station, Asheville, North Carolina, e-Gen. Tech. Rep. SRS-157. pp. 237-244.
    • (2012) Proceedings of Monitoring across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists , pp. 237-244
    • Frescino, T.S.1    Moisen, G.G.2
  • 18
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H. 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5): 1189-1232. doi:10.1214/aos/1013203451.
    • (2001) Ann. Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 20
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., and Tibshirani, R. 2000. Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2): 337-407. doi:10.1214/aos/1016218223.
    • (2000) Ann. Stat , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 30344471525 scopus 로고    scopus 로고
    • Random Forests for land cover classification
    • Gislason, P.O., Benediktsson, J.A., and Sveinsson, J.R. 2006. Random Forests for land cover classification. Pattern Recognit. Lett. 27(4): 294-300. doi:10.1016/j.patrec.2005.08.011.
    • (2006) Pattern Recognit. Lett , vol.27 , Issue.4 , pp. 294-300
    • Gislason, P.O.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 22
    • 84904060559 scopus 로고    scopus 로고
    • Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling
    • Guneralp, İ., Filippi, A.M., and Randall, J. 2014. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. Int. J. Appl. Earth Obs. Geoinf. 33: 119-126. doi:10.1016/j.jag.2014.05.004.
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.33 , pp. 119-126
    • Guneralp, İ.1    Filippi, A.M.2    Randall, J.3
  • 24
    • 79959852979 scopus 로고    scopus 로고
    • Comparison of values of Pearson’s and Spear-man’s correlation coefficients on the same sets of data
    • Hauke, J., and Kossowski, T. 2011. Comparison of values of Pearson’s and Spear-man’s correlation coefficients on the same sets of data. Quaestiones Geographicae, 30(2): 87-93. doi:10.2478/v10117-011-0021-1.
    • (2011) Quaestiones Geographicae , vol.30 , Issue.2 , pp. 87-93
    • Hauke, J.1    Kossowski, T.2
  • 25
    • 4143112403 scopus 로고    scopus 로고
    • Development of a 2001 National Landcover Database for the United States
    • Homer, C., Huang, C., Yang, L., Wylie, B., and Coan, M. 2004. Development of a 2001 National Landcover Database for the United States. Photogramm. Eng. Remote Sens. 70(7): 829-840. doi:10.14358/PERS.70.7.829.
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , Issue.7 , pp. 829-840
    • Homer, C.1    Huang, C.2    Yang, L.3    Wylie, B.4    Coan, M.5
  • 27
    • 84963924231 scopus 로고    scopus 로고
    • Repeatability in photo-interpretation of tree canopy cover and its effect on predictive mapping
    • Edited by W. McWilliams and F.A. Roesch. USDA Forest Service, Southern Research Station, Asheville, North Carolina, e-Gen. Tech. Rep. SRS-157
    • Jackson, T.A., Moisen, G., Patterson, P.L., and Tipton, J. 2012. Repeatability in photo-interpretation of tree canopy cover and its effect on predictive mapping. In Monitoring Across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists. Edited by W. McWilliams and F.A. Roesch. USDA Forest Service, Southern Research Station, Asheville, North Carolina, e-Gen. Tech. Rep. SRS-157. pp. 189-192.
    • (2012) Monitoring across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists , pp. 189-192
    • Jackson, T.A.1    Moisen, G.2    Patterson, P.L.3    Tipton, J.4
  • 28
    • 0033019629 scopus 로고    scopus 로고
    • Assessing forest canopies and understory illumination: Canopy closure, canopy cover and other measures
    • Jennings, S.B., Brown, N.D., and Sheil, D. 1999. Assessing forest canopies and understory illumination: canopy closure, canopy cover and other measures. Forestry, 72(1): 59-73. doi:10.1093/forestry/72.1.59.
    • (1999) Forestry , vol.72 , Issue.1 , pp. 59-73
    • Jennings, S.B.1    Brown, N.D.2    Sheil, D.3
  • 30
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence, R., Bunn, A., Powell, S., and Zambon, M. 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 9(3): 331-336. doi:10.1016/j.rse.2004.01.007.
    • (2004) Remote Sens. Environ , vol.9 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 31
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest)
    • Lawrence, R.L., Wood, S.D., and Sheley, R.L. 2006. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest). Remote Sens. Environ. 100: 356-362. doi:10.1016/j.rse.2005.10.014.
    • (2006) Remote Sens. Environ , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 32
    • 33749591316 scopus 로고    scopus 로고
    • Variation in demersal fish species richness in the oceans surrounding New Zealand: An analysis using boosted regression trees
    • Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., and Taylor, P. 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar. Ecol. Prog. Ser. 321: 267-281. doi:10.3354/meps321267.
    • (2006) Mar. Ecol. Prog. Ser , vol.321 , pp. 267-281
    • Leathwick, J.R.1    Elith, J.2    Francis, M.P.3    Hastie, T.4    Taylor, P.5
  • 33
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw, A., and Wiener, M. 2002. Classification and regression by random forest. R News, 2: 18-22. Available from http://CRAN.R-project.org/doc/Rnews/.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 34
    • 33645790952 scopus 로고    scopus 로고
    • Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service
    • McRoberts, R.E., Holden, G.R., Nelson, M.D., Liknes, G.C., and Gormanson, D.D. 2005. Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service. Can. J. For. Res. 35(12): 2968-2980. doi:10.1139/x05-222.
    • (2005) Can. J. For. Res , vol.35 , Issue.12 , pp. 2968-2980
    • McRoberts, R.E.1    Holden, G.R.2    Nelson, M.D.3    Liknes, G.C.4    Gormanson, D.D.5
  • 35
    • 85042421969 scopus 로고    scopus 로고
    • Classification and regression trees
    • Edited by S.E. Jorgensen and B.D. Fath. Elsevier
    • Moisen, G.G. 2008. Classification and regression trees. In Encyclopedia of Ecology. Vol. 1. Edited by S.E. Jorgensen and B.D. Fath. Elsevier. pp. 582-588.
    • (2008) Encyclopedia of Ecology , vol.1 , pp. 582-588
    • Moisen, G.G.1
  • 36
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen, G.G., and Frescino, T.S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecol. Model. 157: 209-225. doi:10.1016/S0304-3800(02)00197-7.
    • (2002) Ecol. Model , vol.157 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 37
    • 33750041371 scopus 로고    scopus 로고
    • Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods
    • Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann, N.E., and Edwards, T.C., Jr. 2006. Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol. Model. 199: 176-187. doi:10.1016/j.ecolmodel.2006.05.021.
    • (2006) Ecol. Model , vol.199 , pp. 176-187
    • Moisen, G.G.1    Freeman, E.A.2    Blackard, J.A.3    Frescino, T.S.4    Zimmermann, N.E.5    Edwards, T.C.6
  • 39
    • 0026359098 scopus 로고
    • Digital terrain modelling: Review of hydrological, geomorphological, and biological applications
    • Moore, I.D., Grayson, R.B., and Ladson, A.R. 1991. Digital terrain modelling: review of hydrological, geomorphological, and biological applications. Hydrol. Processes, 5: 3-30. doi:10.1002/hyp.3360050103.
    • (1991) Hydrol. Processes , vol.5 , pp. 3-30
    • Moore, I.D.1    Grayson, R.B.2    Ladson, A.R.3
  • 40
    • 33746240855 scopus 로고    scopus 로고
    • Air pollution removal by urban trees and shrubs in the United States
    • Nowak, D.J., Crane, D.E., and Stevens, J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4(3-4): 115-123. doi:10.1016/j.ufug.2006.01.007.
    • (2006) Urban Forestry and Urban Greening , vol.4 , Issue.3-4 , pp. 115-123
    • Nowak, D.J.1    Crane, D.E.2    Stevens, J.C.3
  • 41
    • 72049126864 scopus 로고    scopus 로고
    • Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals
    • Pittman, S.J., Costa, B.M., and Battista, T.A. 2009. Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coastal Res., Spec. Issue, 53: 27-38. doi:10.2112/SI53-004.1.
    • (2009) J. Coastal Res., Spec. Issue , vol.53 , pp. 27-38
    • Pittman, S.J.1    Costa, B.M.2    Battista, T.A.3
  • 42
    • 76049083444 scopus 로고    scopus 로고
    • Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches
    • Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., and Ohmann, J.L. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens. Environ. 114(5): 1053-1068. doi:10.1016/j.rse.2009.12.018.
    • (2010) Remote Sens. Environ , vol.114 , Issue.5 , pp. 1053-1068
    • Powell, S.L.1    Cohen, W.B.2    Healey, S.P.3    Kennedy, R.E.4    Moisen, G.G.5    Pierce, K.B.6    Ohmann, J.L.7
  • 43
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.M., Iverson, L.R., and Liaw, A. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9: 181-199. doi:10.1007/s10021-005-0054-1.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 44
    • 5344244656 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org.ISBN3-900051-07-0.
    • (2008) R: A Language and Environment for Statistical Computing
  • 48
    • 38949155145 scopus 로고    scopus 로고
    • Woody cover in African savannas: The role of resources, fire and herbivory
    • Sankaran, M., Ratnam, J., and Hanan, N. 2008. Woody cover in African savannas: the role of resources, fire and herbivory. Glob. Ecol. Biogeogr. 17: 236-245. doi:10.1111/j.1466-8238.2007.00360.x.
    • (2008) Glob. Ecol. Biogeogr , vol.17 , pp. 236-245
    • Sankaran, M.1    Ratnam, J.2    Hanan, N.3
  • 50
  • 51
    • 82455219809 scopus 로고    scopus 로고
    • USDA Farm Service Agency, Aerial Photography Field Office, Salt Lake City, Utah, accessed 29 March 2012
    • U.S. Department of Agriculture (USDA). 2009. National Agriculture Imagery Program. USDA Farm Service Agency, Aerial Photography Field Office, Salt Lake City, Utah. Available from http://www.apfo.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=nai [accessed 29 March 2012].
    • (2009) National Agriculture Imagery Program
    • U.S. Department of Agriculture (USDA)1
  • 52
    • 31944435215 scopus 로고    scopus 로고
    • Afforestation and stream temperature in a temperate maritime environment
    • Webb, B.W., and Crisp, D.T. 2006. Afforestation and stream temperature in a temperate maritime environment. Hydrol. Processes, 20(1): 51-66. doi:10.1002/hyp.5898.
    • (2006) Hydrol. Processes , vol.20 , Issue.1 , pp. 51-66
    • Webb, B.W.1    Crisp, D.T.2
  • 53
    • 0026458983 scopus 로고
    • Cartographic and geometric components of a global sampling design for environmental monitoring
    • White, D., Kimerling, J., and Overton, S.W. 1992. Cartographic and geometric components of a global sampling design for environmental monitoring. Cartographic and Geographic Information Systems, 19(1): 5-22. doi:10.1559/152304092783786636.
    • (1992) Cartographic and Geographic Information Systems , vol.19 , Issue.1 , pp. 5-22
    • White, D.1    Kimerling, J.2    Overton, S.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.