-
2
-
-
78651106504
-
Saliency detection using maximum symmetric surround
-
R. Achanta and S. Siisstrunk. Saliency Detection using Maximum Symmetric Surround. In ICIP, 2010
-
(2010)
ICIP
-
-
Achanta, R.1
Siisstrunk, S.2
-
4
-
-
34948898079
-
Image segmentation by probabilistic bottom-up aggregation and cue integration
-
S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue integration. In C VPR, 2007
-
(2007)
C VPR
-
-
Alpert, S.1
Galun, M.2
Basri, R.3
Brandt, A.4
-
5
-
-
84867849793
-
State-of-the-art in visual attention modeling
-
A. Borji and L. Itti. State-of-the-art in visual attention modeling. TPAMI,2010
-
(2010)
TPAMI
-
-
Borji, A.1
Itti, L.2
-
6
-
-
84866687480
-
Exploiting local and global patch rarities for saliency detection
-
A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In C VPR, 2012
-
(2012)
C VPR
-
-
Borji, A.1
Itti, L.2
-
7
-
-
84883229216
-
Salient object detection: A benchmark
-
A. Borji and L. Itti. Salient object detection: A benchmark. In ECC V, 2012
-
(2012)
ECC v
-
-
Borji, A.1
Itti, L.2
-
8
-
-
84871656223
-
Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
-
A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Transactions on Image Processing, 2013
-
(2013)
IEEE Transactions on Image Processing
-
-
Borji, A.1
Sihite, D.N.2
Itti, L.3
-
9
-
-
62649143331
-
Saliency, attention, and visual search: An information theoretic approach
-
N. D. B. Bruce and J. K. Tsotsos. Saliency, attention, and visual search: An information theoretic approach. J. of Vision, 9(3), 2009
-
(2009)
J. of Vision
, vol.9
, Issue.3
-
-
Bruce, N.D.B.1
Tsotsos, J.K.2
-
10
-
-
84923094805
-
Global contrast based salient region detection
-
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu. Global contrast based salient region detection. TPAMI, 37(3):569-582, 2015
-
(2015)
TPAMI
, vol.37
, Issue.3
, pp. 569-582
-
-
Cheng, M.-M.1
Mitra, N.J.2
Huang, X.3
Torr, P.H.S.4
Hu, S.-M.5
-
11
-
-
0036565814
-
Mean shift: A robust approach toward feature space analysis
-
D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. TPAMI, 24(5), 2002
-
(2002)
TPAMI
, vol.24
, Issue.5
-
-
Comaniciu, D.1
Meer, P.2
-
14
-
-
65549107078
-
Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition
-
D. Gao, S. Han, and N. Vasconcelos. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. TPAMI, 31(6), 2009
-
(2009)
TPAMI
, vol.31
, Issue.6
-
-
Gao, D.1
Han, S.2
Vasconcelos, N.3
-
15
-
-
50649108122
-
Bottom-up saliency is a discriminant process
-
D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICC V, 2007
-
(2007)
ICC v
-
-
Gao, D.1
Vasconcelos, N.2
-
16
-
-
84856473161
-
Saliency from hierarchical adaptation through decorrelation and variance normalization
-
A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil. Saliency from hierarchical adaptation through decorrelation and variance normalization. Image and Vision Computing, 30(1), 2012
-
(2012)
Image and Vision Computing
, vol.30
, Issue.1
-
-
Garcia-Diaz, A.1
Fdez-Vidal, X.R.2
Pardo, X.M.3
Dosil, R.4
-
17
-
-
81855172211
-
Image signature: Highlighting sparse salient regions
-
X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. TPAMI,2012
-
(2012)
TPAMI
-
-
Hou, X.1
Harel, J.2
Koch, C.3
-
19
-
-
58149432246
-
An opponent-process theory of color vision
-
L. Hurvich and D. Jameson. An opponent-process theory of color vision. Psychological review, 64(6), 1957
-
(1957)
Psychological Review
, vol.64
, Issue.6
-
-
Hurvich, L.1
Jameson, D.2
-
20
-
-
67349174184
-
Bayesian surprise attracts human attention
-
L. Itti and P. Baldi. Bayesian surprise attracts human attention. Vision Research, 49(10), 2009
-
(2009)
Vision Research
, vol.49
, Issue.10
-
-
Itti, L.1
Baldi, P.2
-
21
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
L. Itti, c. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 20(11), 1998
-
(1998)
TPAMI
, vol.20
, Issue.11
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
22
-
-
84887392014
-
Salient object detection: A discriminative regional feature integration approach
-
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In C VPR, 2013
-
(2013)
C VPR
-
-
Jiang, H.1
Wang, J.2
Yuan, Z.3
Wu, Y.4
Zheng, N.5
Li, S.6
-
23
-
-
84856633724
-
Center-surround divergence of feature statistics for salient object detection
-
D. A. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. In ICC V, 2011
-
(2011)
ICC v
-
-
Klein, D.A.1
Frintrop, S.2
-
24
-
-
84919937175
-
Salient pattern detection using w2 on multivariate normal distributions
-
D. A. Klein and S. Frintrop. Salient Pattern Detection using W2 on Multivariate Normal Distributions. In DAGM-OAGM,2012
-
(2012)
DAGM-OAGM
-
-
Klein, D.A.1
Frintrop, S.2
-
25
-
-
0022388528
-
Shifts in selective visual attention: Towards the underlying neural circuitry
-
C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227,1985
-
(1985)
Human Neurobiology
, vol.4
, Issue.4
, pp. 219-227
-
-
Koch, C.1
Ullman, S.2
-
26
-
-
84911400874
-
The secrets of salient object segmentation
-
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In C VPR, 2014
-
(2014)
C VPR
-
-
Li, Y.1
Hou, X.2
Koch, C.3
Rehg, J.M.4
Yuille, A.L.5
-
27
-
-
85026930243
-
Learning to detect a salient object
-
T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. TPAMI,2009
-
(2009)
TPAMI
-
-
Liu, T.1
Yuan, Z.2
Sun, J.3
Wang, J.4
Zheng, N.5
Tang, X.6
Shum, H.-Y.7
-
28
-
-
3042535216
-
Distinctive image features from scaleinvariant keypoints
-
D. G. Lowe. Distinctive image features from scaleinvariant keypoints. Int'l J. of Computer Vision (IJCV), 60(2):91-110, 2004
-
(2004)
Int'l J. of Computer Vision (IJCV)
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
30
-
-
84938233189
-
Saliency-based object discovery on RGB-D data with a late-fusion approach
-
G. MartIn-Garda, E. Potapova, T. Werner, M. Zillich, M. Vincze, and S. Frintrop. Saliency-based object discovery on RGB-D data with a late-fusion approach. In ICRA,2015
-
(2015)
ICRA
-
-
Martin-Garda, G.1
Potapova, E.2
Werner, T.3
Zillich, M.4
Vincze, M.5
Frintrop, S.6
-
31
-
-
0028134348
-
Integration of bottom-up and top-down cues for visual attention using non-linear relaxation
-
R. Milanese, H. Wechsler, S. Gil, J. Bost, and T. Pun. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. In C VPR, 1994
-
(1994)
C VPR
-
-
Milanese, R.1
Wechsler, H.2
Gil, S.3
Bost, J.4
Pun, T.5
-
32
-
-
84866667038
-
Saliency filters: Contrast based filtering for salient region detection
-
Jun
-
F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In C VPR, Jun. 2012
-
(2012)
C VPR
-
-
Perazzi, F.1
Krahenbuhl, P.2
Pritch, Y.3
Hornung, A.4
-
33
-
-
84898777920
-
Quaternion-based spectral saliency detection for eye fixation prediction
-
B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECC V, 2012
-
(2012)
ECC v
-
-
Schauerte, B.1
Stiefelhagen, R.2
-
34
-
-
0018878142
-
A feature integration theory of attention
-
A. M. Treisman and G. Gelade. A feature integration theory of attention. Cog. Psych., 12, 1980
-
(1980)
Cog. Psych
, vol.12
-
-
Treisman, A.M.1
Gelade, G.2
-
35
-
-
33750684017
-
Modeling attention to salient proto-objects
-
D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural Networks, 2006
-
(2006)
Neural Networks
-
-
Walther, D.1
Koch, C.2
-
36
-
-
2642558848
-
What attributes guide the deployment of visual attention and how do they do it
-
J. M. Wolfe and T. S. Horowitz. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5:1-7,2004
-
(2004)
Nature Reviews Neuroscience
, vol.5
, pp. 1-7
-
-
Wolfe, J.M.1
Horowitz, T.S.2
-
37
-
-
84887373586
-
What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency
-
R. J. X. Sun, H. Yao. What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency. In C VPR, 2012
-
(2012)
C VPR
-
-
Sun, R.J.X.1
Yao, H.2
-
39
-
-
84887357058
-
Saliency detection via graph-based manifold ranking
-
c. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency Detection via Graph-based Manifold Ranking. In C VPR, 2013
-
(2013)
C VPR
-
-
Yang, C.1
Zhang, L.2
Lu, H.3
Ruan, X.4
Yang, M.-H.5
-
40
-
-
58149506125
-
Sun: A Bayesian framework for saliency using natural statistics
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. Sun: A Bayesian framework for saliency using natural statistics. J. of Vision, 8(32), 2008
-
(2008)
J. of Vision
, vol.8
, Issue.32
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cottrell, G.W.5
-
41
-
-
84862908579
-
Neural activities in v 1 create a bottom-up saliency map
-
X. Zhang, L. Zhaoping, T. Zhou, and F. Fang. Neural activities in V 1 create a bottom-up saliency map. Neuron, 73: 183-192, 2012
-
(2012)
Neuron
, vol.73
, pp. 183-192
-
-
Zhang, X.1
Zhaoping, L.2
Zhou, T.3
Fang, F.4
-
42
-
-
84908430743
-
A multi-size superpixel approach for salient object detection based on multivariate normal distribution estimation
-
L. Zhu, Z. Cao, D. A. Klein, S. Frintrop, and A. B. Cremers. A multi-size superpixel approach for salient object detection based on multivariate normal distribution estimation. TIP, 23(12), 2014.
-
(2014)
TIP
, vol.23
, Issue.12
-
-
Zhu, L.1
Cao, Z.2
Klein, D.A.3
Frintrop, S.4
Cremers, A.B.5
|