메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4539-4547

Heteroscedastic max-min distance analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DISCRIMINANT ANALYSIS; LEARNING SYSTEMS;

EID: 84959194314     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299084     Document Type: Conference Paper
Times cited : (26)

References (30)
  • 1
    • 33746094644 scopus 로고    scopus 로고
    • On the performance of chernoff-distance-based linear dimensionality reduction techniques
    • M. L. Ali, L. Rueda, and M. Herrera. On the performance of chernoff-distance-based linear dimensionality reduction techniques. In Advances in Artificial Intelligence, pages 467-478. 2006.
    • (2006) Advances in Artificial Intelligence , pp. 467-478
    • Ali, M.L.1    Rueda, L.2    Herrera, M.3
  • 2
    • 84886567160 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • K. Bache and M. Lichman. UCI Machine Learning Repository. http://archive. ics. uci. edu/ml, University of California, Irvine, School of Information and Computer Sciences, 2013.
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 3
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential sdp relaxation for dimension reduction
    • W. Bian and D. Tao. Max-min distance analysis by using sequential sdp relaxation for dimension reduction. PAMI, 33(5):1037-1050, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 1037-1050
    • Bian, W.1    Tao, D.2
  • 5
    • 33750378734 scopus 로고    scopus 로고
    • Orthogonal laplacianfaces for face recognition
    • D. Cai, X. He, J. Han, and H.-J. Zhang. Orthogonal laplacianfaces for face recognition. TIP, 15(11):3608-3614, 2006.
    • (2006) TIP , vol.15 , Issue.11 , pp. 3608-3614
    • Cai, D.1    He, X.2    Han, J.3    Zhang, H.-J.4
  • 6
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 7
    • 42449085399 scopus 로고    scopus 로고
    • Bayes optimality in linear discriminant analysis
    • O. Hamsici and A. Martinez. Bayes optimality in linear discriminant analysis. PAMI, 30(4):647-657, 2008.
    • (2008) PAMI , vol.30 , Issue.4 , pp. 647-657
    • Hamsici, O.1    Martinez, A.2
  • 8
    • 15044358511 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Graph embedding and extensions: A general framework for dimensionality reduction. PAMI, 27(3):328-340, 2005.
    • (2005) PAMI , vol.27 , Issue.3 , pp. 328-340
    • He, X.1    Yan, S.2    Hu, Y.3    Niyogi, P.4    Zhang, H.-J.5
  • 9
    • 34948860604 scopus 로고    scopus 로고
    • Face recognition using discriminatively trained orthogonal rank one tensor projections
    • G. Hua, P. A. Viola, and S. M. Drucker. Face recognition using discriminatively trained orthogonal rank one tensor projections. In CVPR, 2007.
    • (2007) CVPR
    • Hua, G.1    Viola, P.A.2    Drucker, S.M.3
  • 11
    • 0032289099 scopus 로고    scopus 로고
    • Heteroscedastic discriminant analysis and reduced rank hmms for improved speech recognition
    • N. Kumar and A. G. Andreou. Heteroscedastic discriminant analysis and reduced rank hmms for improved speech recognition. Speech communication, 26(4):283-297, 1998.
    • (1998) Speech Communication , vol.26 , Issue.4 , pp. 283-297
    • Kumar, N.1    Andreou, A.G.2
  • 12
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of lda: The chernoff criterion
    • M. Loog and R. Duin. Linear dimensionality reduction via a heteroscedastic extension of lda: The chernoff criterion. PAMI, 26(6):732-739, 2004.
    • (2004) PAMI , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.2
  • 13
    • 0035393361 scopus 로고    scopus 로고
    • Multiclass linear dimension reduction by weighted pairwise fisher criteria
    • M. Loog, R. P. W. Duin, and R. Haeb-Umbach. Multiclass linear dimension reduction by weighted pairwise fisher criteria. PAMI, 23(7):762-766, 2001.
    • (2001) PAMI , vol.23 , Issue.7 , pp. 762-766
    • Loog, M.1    Duin, R.P.W.2    Haeb-Umbach, R.3
  • 16
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • C. Rao. The utilization of multiple measurements in problems of biological classification. J. Royal Statistical Soc. , Series B, 10:159-203, 1948.
    • (1948) J. Royal Statistical Soc. , Series B , vol.10 , pp. 159-203
    • Rao, C.1
  • 17
    • 45849107211 scopus 로고    scopus 로고
    • Linear dimensionality reduction by maximizing the chernoff distance in the transformed space
    • L. Rueda and M. Herrera. Linear dimensionality reduction by maximizing the chernoff distance in the transformed space. PR, 41(10):3138-3152, 2008.
    • (2008) PR , vol.41 , Issue.10 , pp. 3138-3152
    • Rueda, L.1    Herrera, M.2
  • 18
    • 49449103684 scopus 로고    scopus 로고
    • Supervised dimensionality reduction via sequential semidefinite programming
    • C. Shen, H. Li, and M. Brooks. Supervised dimensionality reduction via sequential semidefinite programming. PR, 41(12):3644-3652, 2008.
    • (2008) PR , vol.41 , Issue.12 , pp. 3644-3652
    • Shen, C.1    Li, H.2    Brooks, M.3
  • 19
    • 84898829918 scopus 로고    scopus 로고
    • Linear sequence discriminant analysis: A model-based dimensionality reduction method for vector sequences
    • B. Su and X. Ding. Linear sequence discriminant analysis: A model-based dimensionality reduction method for vector sequences. In ICCV, 2013.
    • (2013) ICCV
    • Su, B.1    Ding, X.2
  • 20
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. JMLR, 8:1027-1061, 2007.
    • (2007) JMLR , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 21
    • 0033295027 scopus 로고    scopus 로고
    • Sdpt3 - a matlab software package for semidefinite programming
    • K. Toh, M. Todd, and R. Tutuncu. Sdpt3 - a matlab software package for semidefinite programming. Optimization Methods and Software, 11:545-581, 1999.
    • (1999) Optimization Methods and Software , vol.11 , pp. 545-581
    • Toh, K.1    Todd, M.2    Tutuncu, R.3
  • 22
    • 3142743708 scopus 로고    scopus 로고
    • Solving semidefinitequadratic-linear programs using sdpt3
    • R. Tutuncu, K. Toh, and M. Todd. Solving semidefinitequadratic-linear programs using sdpt3. Mathematical Programming Ser. B, 95:189-217, 2003.
    • (2003) Mathematical Programming Ser. B , vol.95 , pp. 189-217
    • Tutuncu, R.1    Toh, K.2    Todd, M.3
  • 23
    • 1842705510 scopus 로고    scopus 로고
    • Y. Univ. Yale face database. http://cvc. yale. edu/projects/yalefaces/yalefaces. html, 2002.
    • (2002) Yale Face Database
    • Univ, Y.1
  • 24
    • 0037410685 scopus 로고    scopus 로고
    • Facial expression recognition: A clustering-based approach
    • X. wen Chen and T. Huang. Facial expression recognition: A clustering-based approach. PRL, 24(9):1295-1302, 2003.
    • (2003) PRL , vol.24 , Issue.9 , pp. 1295-1302
    • Wen Chen, X.1    Huang, T.2
  • 25
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions: A general framework for dimensionality reduction. PAMI, 29(1):40-51, 2007.
    • (2007) PAMI , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.-J.4    Yang, Q.5    Lin, S.6
  • 26
    • 78649330602 scopus 로고    scopus 로고
    • Distance metric learning by minimal distance maximization
    • Y. Yu, J. Jiang, and L. Zhang. Distance metric learning by minimal distance maximization. PR, 44(3):639-649, 2011.
    • (2011) PR , vol.44 , Issue.3 , pp. 639-649
    • Yu, Y.1    Jiang, J.2    Zhang, L.3
  • 27
    • 67349241516 scopus 로고    scopus 로고
    • Tensor linear laplacian discrimination (tlld) for feature extraction
    • W. Zhang, Z. Lin, and X. Tang. Tensor linear laplacian discrimination (tlld) for feature extraction. PR, 42(9):1941-1948, 2009.
    • (2009) PR , vol.42 , Issue.9 , pp. 1941-1948
    • Zhang, W.1    Lin, Z.2    Tang, X.3
  • 28
    • 84876699815 scopus 로고    scopus 로고
    • Evaluation of weighted fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition
    • X.-Y. Zhang and C.-L. Liu. Evaluation of weighted fisher criteria for large category dimensionality reduction in application to chinese handwriting recognition. PR, 46(9):2599-2611, 2013.
    • (2013) PR , vol.46 , Issue.9 , pp. 2599-2611
    • Zhang, X.-Y.1    Liu, C.-L.2
  • 29
    • 85162035389 scopus 로고    scopus 로고
    • Worst-case linear discriminant analysis
    • Y. Zhang and D.-Y. Yeung. Worst-case linear discriminant analysis. In NIPS, 2010.
    • (2010) NIPS
    • Zhang, Y.1    Yeung, D.-Y.2
  • 30
    • 33748159278 scopus 로고    scopus 로고
    • Subclass discriminant analysis
    • M. Zhu and A. Martinez. Subclass discriminant analysis. PAMI, 28(8):1274-1286, 2006.
    • (2006) PAMI , vol.28 , Issue.8 , pp. 1274-1286
    • Zhu, M.1    Martinez, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.