-
1
-
-
0000499854
-
Stein’s method for diffusion approximations
-
Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields 84, 297–322 (1990)
-
(1990)
Probab. Theory Relat. Fields
, vol.84
, pp. 297-322
-
-
Barbour, A.D.1
-
3
-
-
77049111151
-
Multivariate normal approximation using exchangeable pairs
-
Chatterjee, S., Meckes, E.: Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J Probab. Math. Stat. 4, 257–283 (2008)
-
(2008)
ALEA Lat. Am. J Probab. Math. Stat.
, vol.4
, pp. 257-283
-
-
Chatterjee, S.1
Meckes, E.2
-
4
-
-
35148822926
-
Normal approximation
-
Singapore University Press, Singapore
-
Chen, L.H.Y., Shao, Q.-M.: Normal approximation. In: An Introduction to Stein’s Method. Lecture Notes in Series. Institute for Mathematical Sciences. National University of Singapore, vol. 1, pp. 1–60. Singapore University Press, Singapore (2005)
-
(2005)
An Introduction to Stein’s Method. Lecture Notes in Series. Institute for Mathematical Sciences. National University of Singapore, vol. 1
, pp. 1-60
-
-
Chen, L.H.Y.1
Shao, Q.-M.2
-
5
-
-
79751482522
-
-
Springer, Berlin
-
Chen, L.H.Y., Goldstein, L., Shao, Q.-M.: Normal Approximation by Stein’s Method. Springer, Berlin (2011)
-
(2011)
Normal Approximation by Stein’s Method
-
-
Chen, L.H.Y.1
Goldstein, L.2
Shao, Q.-M.3
-
6
-
-
0000714249
-
The best bounds in Gautschi’s inequality
-
Elezović, N., Giordano, C., Pečarić, J.: The best bounds in Gautschi’s inequality. Math. Inequal. Appl. 3, 239–252 (2000)
-
(2000)
Math. Inequal. Appl.
, vol.3
, pp. 239-252
-
-
Elezović, N.1
Giordano, C.2
Pečarić, J.3
-
7
-
-
84904204515
-
Inequalities for modified Bessel functions and their integrals. J. Math. Anal
-
Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. (2014). doi:10.1016/j.jmaa.2014.05.083
-
(2014)
Appl
-
-
Gaunt, R.E.1
-
8
-
-
0031260681
-
Stein’s Method and the zero bias transformation with application to simple random sampling
-
Goldstein, L., Reinert, G.: Stein’s Method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7, 935–952 (1997)
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 935-952
-
-
Goldstein, L.1
Reinert, G.2
-
9
-
-
0030535645
-
Multivariate normal approximations by Stein’s method and size bias couplings
-
Goldstein, L., Rinott, Y.: Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Probab. 33, 1–17 (1996)
-
(1996)
J. Appl. Probab.
, vol.33
, pp. 1-17
-
-
Goldstein, L.1
Rinott, Y.2
-
10
-
-
0001354702
-
On the rate of convergence in the multivariate CLT
-
Götze, F.: On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724–739 (1991)
-
(1991)
Ann. Probab.
, vol.19
, pp. 724-739
-
-
Götze, F.1
-
12
-
-
79953173697
-
On the normal approximation to symmetric binomial distributions
-
Hipp, C., Mattner, L.: On the normal approximation to symmetric binomial distributions. Theory Probab. Appl. 52, 610–617 (2007)
-
(2007)
Theory Probab. Appl.
, vol.52
, pp. 610-617
-
-
Hipp, C.1
Mattner, L.2
-
13
-
-
79957949749
-
On Stein’s method for multivariate normal approximation
-
Meckes, E.: On Stein’s method for multivariate normal approximation. IMS Collect. 5, 153–178 (2009)
-
(2009)
IMS Collect.
, vol.5
, pp. 153-178
-
-
Meckes, E.1
-
15
-
-
4544380832
-
A multivariate CLT for decomposable random vectors with finite second moments
-
Raič, M.: A multivariate CLT for decomposable random vectors with finite second moments. J. Theor. Probab. 17, 573–603 (2004)
-
(2004)
J. Theor. Probab.
, vol.17
, pp. 573-603
-
-
Raič, M.1
-
17
-
-
77049095137
-
Multivariate normal approximations with Stein’s method of exchangeable pairs under a general linearity condition
-
Reinert, G., Röllin, A.: Multivariate normal approximations with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37, 2150–2173 (2009)
-
(2009)
Ann. Probab.
, vol.37
, pp. 2150-2173
-
-
Reinert, G.1
Röllin, A.2
-
18
-
-
84959171563
-
-
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of Sixth Berkeley Symposium on Mathematical Statistics and Probability (1972), vol. 2, pp. 583–602. University of California Press, Berkeley
-
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of Sixth Berkeley Symposium on Mathematical Statistics and Probability (1972), vol. 2, pp. 583–602. University of California Press, Berkeley
-
-
-
-
20
-
-
84959122082
-
-
Winkelbauer, A.: Moments and absolute moments of the normal distribution (2012)
-
Winkelbauer, A.: Moments and absolute moments of the normal distribution (2012). arXiv:1209.4340
-
-
-
|