메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2872-2876

I-vector estimation using informative priors for adaptation of deep neural networks

Author keywords

Deep neural networks; I vectors; Prior information; Speaker adaptation

Indexed keywords

SPEECH COMMUNICATION; SPEECH RECOGNITION; VECTORS;

EID: 84959162419     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 1
    • 84893691530 scopus 로고    scopus 로고
    • Speaker adaptation of neural network acoustic models using i-vectors
    • G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, "Speaker adaptation of neural network acoustic models using i-vectors, " in Proc. ASRU, 2013, pp. 55-59.
    • (2013) Proc. ASRU , pp. 55-59
    • Saon, G.1    Soltau, H.2    Nahamoo, D.3    Picheny, M.4
  • 2
    • 84905259138 scopus 로고    scopus 로고
    • Improving DNN speaker independence with i-vector inputs
    • A. Senior and I. Lopez-Moreno, "Improving DNN speaker independence with i-vector inputs, " in Proc. ICASSP, 2014, pp. 225-229.
    • (2014) Proc. ICASSP , pp. 225-229
    • Senior, A.1    Lopez-Moreno, I.2
  • 3
    • 84910068089 scopus 로고    scopus 로고
    • Adaptation of deep neural network acoustic models using factorised i-vectors
    • P. Karanasou, Y. Wang, M. J. F. Gales, and P. C. Woodland, "Adaptation of deep neural network acoustic models using factorised i-vectors, " in Proc. Interspeech, 2014, pp. 2180-2184.
    • (2014) Proc. Interspeech , pp. 2180-2184
    • Karanasou, P.1    Wang, Y.2    Gales, M.J.F.3    Woodland, P.C.4
  • 4
    • 84905225575 scopus 로고    scopus 로고
    • IVector-based acoustic data selection
    • O. Siohan and M. Bacchiani, "iVector-based acoustic data selection, " in Proc. Interspeech, 2013, pp. 657-661.
    • (2013) Proc. Interspeech , pp. 657-661
    • Siohan, O.1    Bacchiani, M.2
  • 7
    • 80051652767 scopus 로고    scopus 로고
    • Bayesian speaker verification with heavy-tailed priors
    • -, "Bayesian speaker verification with heavy-tailed priors, " in Proc. Odyssey-10, 2010.
    • (2010) Proc. Odyssey-10
    • Kenny, P.1
  • 8
    • 84865733857 scopus 로고    scopus 로고
    • Analysis of i-vector length normalization in speaker recognition systems
    • D. Garcia-Romero and C. Y. Espy-Wilson, "Analysis of i-vector length normalization in speaker recognition systems, " in Proc. Interspeech, 2011, pp. 249-252.
    • (2011) Proc. Interspeech , pp. 249-252
    • Garcia-Romero, D.1    Espy-Wilson, C.Y.2
  • 9
    • 84910028543 scopus 로고    scopus 로고
    • Modified-prior i-vector estimation for language identification of short duration utterances
    • R. Travadi, M. V. Segbroeck, and S. Narayanan, "Modified-prior i-vector estimation for language identification of short duration utterances, " in Proc. Interspeech, 2014, pp. 3037-3041.
    • (2014) Proc. Interspeech , pp. 3037-3041
    • Travadi, R.1    Segbroeck, M.V.2    Narayanan, S.3
  • 10
    • 85135187845 scopus 로고    scopus 로고
    • Transformation smoothing for speaker and environmental adaptation
    • M. J. F. Gales, "Transformation smoothing for speaker and environmental adaptation, " in Proc. Eurospeech, 1997.
    • (1997) Proc. Eurospeech
    • Gales, M.J.F.1
  • 12
    • 84878397811 scopus 로고    scopus 로고
    • Exploring rich expressive information from audiobook data using cluster adaptive training
    • L. Chen, M. J. F. Gales, V. Wan, J. Latorre, and M. Akamine, "Exploring rich expressive information from audiobook data using cluster adaptive training, " in Proc. Interspeech, 2012, pp. 959-962.
    • (2012) Proc. Interspeech , pp. 959-962
    • Chen, L.1    Gales, M.J.F.2    Wan, V.3    Latorre, J.4    Akamine, M.5
  • 14
    • 0033884858 scopus 로고    scopus 로고
    • Speaker verification using adapted Gaussian mixture models
    • D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, "Speaker verification using adapted Gaussian mixture models, " Digital Signal Processing, vol. 10, no. 1-3, pp. 19-41, 2000.
    • (2000) Digital Signal Processing , vol.10 , Issue.1-3 , pp. 19-41
    • Reynolds, D.A.1    Quatieri, T.F.2    Dunn, R.B.3
  • 15
    • 0002992867 scopus 로고    scopus 로고
    • The 1996 broadcast news speech and language-model corpus
    • D. Graff, "The 1996 broadcast news speech and language-model corpus, " in Proc. 1997 DARPA Speech Recognition Workshop, 1997, pp. 11-14.
    • (1997) Proc. 1997 DARPA Speech Recognition Workshop , pp. 11-14
    • Graff, D.1
  • 19
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • M. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition, " Computer Speech and Language, vol. 12, no. 75-98, 1998.
    • (1998) Computer Speech and Language , vol.12 , Issue.75-98
    • Gales, M.1
  • 20
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
    • G. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition, " IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Transactions on Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 21
  • 22
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription, " in Proc. ASRU, 2011, pp. 24-29.
    • (2011) Proc. ASRU , pp. 24-29
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.