메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3615-3619

Towards end-to-end speech recognition for Chinese Mandarin using long short-term memory recurrent neural networks

Author keywords

Connectionist temporal classification; End to end; Long short term memory; Speech recognition

Indexed keywords

BRAIN; COMPUTATIONAL LINGUISTICS; DECODING; HYBRID SYSTEMS; NETWORK ARCHITECTURE; RECURRENT NEURAL NETWORKS; SPEECH; SPEECH COMMUNICATION;

EID: 84959146690     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (25)
  • 3
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependentpre-trained deep neural networks for large-vocabulary speechrecognition
    • G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependentpre-trained deep neural networks for large-vocabulary speechrecognition, " Audio, Speech, and Language Processing, IEEETransactions on, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) Audio, Speech, and Language Processing, IEEETransactions on , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 6
    • 84994215063 scopus 로고    scopus 로고
    • Sequence discriminative distributedtraining of long short-term memory recurrent neural networks
    • H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga, and M. Mao, "Sequence discriminative distributedtraining of long short-term memory recurrent neural networks, "entropy, vol. 15, no. 16, pp. 17-18, 2014.
    • (2014) Entropy , vol.15 , Issue.16 , pp. 17-18
    • Sak, H.1    Vinyals, O.2    Heigold, G.3    Senior, A.4    McDermott, E.5    Monga, R.6    Mao, M.7
  • 9
    • 44949182698 scopus 로고    scopus 로고
    • Hypothesis spaces for minimum bayesrisk training in large vocabulary speech recognition
    • Citeseer
    • M. Gibson and T. Hain, "Hypothesis spaces for minimum bayesrisk training in large vocabulary speech recognition. " in INTERSPEECH. Citeseer, 2006.
    • (2006) INTERSPEECH
    • Gibson, M.1    Hain, T.2
  • 10
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum bayesrisk training of deep neural network acoustic models using distributedhessian-free optimization
    • T. S. Brian Kingsbury and H. Soltau, "Scalable minimum bayesrisk training of deep neural network acoustic models using distributedhessian-free optimization. " in INTERSPEECH, 2012.
    • (2012) INTERSPEECH
    • Brian Kingsbury, T.S.1    Soltau, H.2
  • 12
    • 84906274730 scopus 로고    scopus 로고
    • Sequencediscriminativetraining of deep neural networks
    • K. Vesely, A. Ghoshal, L. Burget, and D. Povey, "Sequencediscriminativetraining of deep neural networks. " in INTERSPEECH, 2013, pp. 2345-2349.
    • (2013) INTERSPEECH , pp. 2345-2349
    • Vesely, K.1    Ghoshal, A.2    Burget, L.3    Povey, D.4
  • 14
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory, "Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 18
    • 0028392483 scopus 로고
    • Learning long-term dependencieswith gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencieswith gradient descent is difficult, " Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157-166, 1994.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 22
    • 84959127999 scopus 로고    scopus 로고
    • Constructing long short-term memorybased deep recurrent neural networks for large vocabularyspeech recognition
    • X. Li and X. Wu, "Constructing long short-term memorybased deep recurrent neural networks for large vocabularyspeech recognition, " CoRR, vol. abs/1410. 4281, 2014. [Online]. Available: http: //arxiv. org/abs/1410. 4281
    • (2014) CoRR. abs/1410. 4281
    • Li, X.1    Wu, X.2
  • 24
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithmfor on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng, "An efficient gradient-based algorithmfor on-line training of recurrent network trajectories, " Neuralcomputation, vol. 2, no. 4, pp. 490-501, 1990.
    • (1990) Neuralcomputation , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.