-
1
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Mohamed, A., Dahl, G. E. and Hinton, G., "Acoustic Modeling Using Deep Belief Networks", IEEE Trans. Audio, Speech, Lang. Proc., 20 (1): 14-22, 2012.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Proc.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.E.2
Hinton, G.3
-
2
-
-
84890478854
-
Multiframe deep neural networks for acoustic modeling
-
Vanhoucke, V., Devin, M. and Heigold, G., "Multiframe deep neural networks for acoustic modeling", in Proc. ICASSP, 7582-7585, 2013.
-
(2013)
Proc. ICASSP
, pp. 7582-7585
-
-
Vanhoucke, V.1
Devin, M.2
Heigold, G.3
-
3
-
-
84892184434
-
Perceptual processing of speech and other perceptual patterns: Some similarities and differences
-
Greenberg S. and Ainsworth, W., Ed, Oxford University Press
-
Warren, R. M., "Perceptual processing of speech and other perceptual patterns: Some similarities and differences", in Greenberg S. and Ainsworth, W., Ed. Listening to Speech: An Auditory Perspective, Oxford University Press, 1998.
-
(1998)
Listening to Speech: An Auditory Perspective
-
-
Warren, R.M.1
-
4
-
-
84911473441
-
Convolutional neural networks for speech recognition
-
Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G. and Yu, D., "Convolutional Neural Networks for Speech Recognition", IEEE/ACM Trans. Audio, Speech, and Lang. Proc., 22 (10): 1533-1545, 2014.
-
(2014)
IEEE/ACM Trans. Audio, Speech, and Lang. Proc.
, vol.22
, Issue.10
, pp. 1533-1545
-
-
Abdel-Hamid, O.1
Mohamed, A.2
Jiang, H.3
Deng, L.4
Penn, G.5
Yu, D.6
-
6
-
-
84893654379
-
Improvements to deep convolutional neural networks for LVCSR
-
Sainath, T., Kinsbury, B., Mohamed, A. and Ramabhadran, B., "Improvements to deep convolutional neural networks for LVCSR", in Proc. ASRU, 2013.
-
(2013)
Proc. ASRU
-
-
Sainath, T.1
Kinsbury, B.2
Mohamed, A.3
Ramabhadran, B.4
-
7
-
-
84906214784
-
Exploring convolutional neural network structures and optimization techniques for speech recognition
-
Abdel-Hamid, O., Deng, L. and Yu, D., "Exploring convolutional neural network structures and optimization techniques for speech recognition", in Proc. Interspeech, 3366-3370, 2013.
-
(2013)
Proc. Interspeech
, pp. 3366-3370
-
-
Abdel-Hamid, O.1
Deng, L.2
Yu, D.3
-
8
-
-
84906276981
-
Convolutional deep rectifier neural nets for phone recognition
-
Toth, L., "Convolutional deep rectifier neural nets for phone recognition", in Proc. Interspeech, 1722-1726, 2013.
-
(2013)
Proc. Interspeech
, pp. 1722-1726
-
-
Toth, L.1
-
10
-
-
84905252069
-
Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition
-
Toth, L., "Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition", in Proc. ICASSP, 190-194, 2014.
-
(2014)
Proc. ICASSP
, pp. 190-194
-
-
Toth, L.1
-
11
-
-
0028516073
-
How do humans process and recognise speech
-
Allen, J., "How Do Humans Process and Recognise Speech", IEEE Trans. Speech and Audio Proc., 2 (4): 567-577, 1994.
-
(1994)
IEEE Trans. Speech and Audio Proc.
, vol.2
, Issue.4
, pp. 567-577
-
-
Allen, J.1
-
12
-
-
84892186467
-
Incorporating information from syllable-length time scales into automatic speech recognition
-
Wu S., Kingsbury B., Mongan N. and Greenberg S., "Incorporating information from syllable-length time scales into automatic speech recognition", in Proc. ICASSP, 721-724, 1998.
-
(1998)
Proc. ICASSP
, pp. 721-724
-
-
Wu, S.1
Kingsbury, B.2
Mongan, N.3
Greenberg, S.4
-
13
-
-
0031643048
-
Multi-resolution cepstral features for phoneme recognition across speech sub-bands
-
McCourt, P., Vaseghi, S. and Harte, N., "Multi-resolution cepstral features for phoneme recognition across speech sub-bands", in Proc. ICASSP, 557-560, 1998.
-
(1998)
Proc. ICASSP
, pp. 557-560
-
-
McCourt, P.1
Vaseghi, S.2
Harte, N.3
-
14
-
-
84959136712
-
-
Microsoft Corporation, Redmond, WA, USA, accessed on 04 Mar
-
"The Computational Network Toolkit (CNTK)", Microsoft Corporation, Redmond, WA, USA. Online: https: //cntk. codeplex. com/SourceControl/latest, accessed on 04 Mar. 2015.
-
(2015)
The Computational Network Toolkit (CNTK)
-
-
-
15
-
-
84976206655
-
-
https: //catalog. ldc. upenn. edu/docs/LDC96S32/FFMTIMIT. TXT
-
-
-
-
16
-
-
0002263996
-
Convolutional networks for images, speech and time series
-
Arbib, M. A., Ed., MIT Press, 255-258
-
LeCun, Y. and Bengio Y., "Convolutional networks for images, speech and time series", in Arbib, M. A., Ed., The Handbook of Brain Theory and Neural Networks, MIT Press, 255-258, 1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
-
-
LeCun, Y.1
Bengio, Y.2
-
17
-
-
84867605836
-
Applying convolutional neural network concepts to hybrid NNHMM models for speech recognition
-
Abdel-Hamid, O., Mohamed, A., Jiang, H. and Penn, G., "Applying convolutional neural network concepts to hybrid NNHMM models for speech recognition", in Proc. ICASSP, 4277-4280, 2012.
-
(2012)
Proc. ICASSP
, pp. 4277-4280
-
-
Abdel-Hamid, O.1
Mohamed, A.2
Jiang, H.3
Penn, G.4
-
18
-
-
0024768209
-
Speaker-independent phone recognition using hidden markov models
-
Lee, K. and Hon, H., "Speaker-Independent Phone Recognition Using Hidden Markov Models", IEEE Trans. Audio, Speech, Signal Proc. 37 (11): 1641-1648, 1989.
-
(1989)
IEEE Trans. Audio, Speech, Signal Proc.
, vol.37
, Issue.11
, pp. 1641-1648
-
-
Lee, K.1
Hon, H.2
-
19
-
-
84959111923
-
-
CUED Machine Intelligence Lab. Cambridge, UK. Online
-
"The Hidden Markov Model Toolkit (HTK)", CUED Machine Intelligence Lab. Cambridge, UK. Online: http: //htk. eng. cam. ac. uk/ftp/software/HTK-3. 4. 1. Tar. gz, accessed on 28 Jun. 2013.
-
(2013)
The Hidden Markov Model Toolkit (HTK), Accessed on 28 Jun
-
-
-
20
-
-
78049271850
-
Parallel training of neural networks for speech recognition
-
Vesely, K., Burget, L. and Grezl, F., "Parallel training of neural networks for speech recognition", in Proc. International Conf. Text, Speech and Dialog, 439-446, 2010.
-
(2010)
Proc. International Conf. Text, Speech and Dialog
, pp. 439-446
-
-
Vesely, K.1
Burget, L.2
Grezl, F.3
|