메뉴 건너뛰기




Volumn 1, Issue 2, 2005, Pages

Tricarboxylic acid cycle and glyoxylate bypass

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84959057500     PISSN: None     EISSN: 23246200     Source Type: Journal    
DOI: 10.1128/ecosalplus.3.5.2     Document Type: Article
Times cited : (79)

References (159)
  • 1
    • 0001594470 scopus 로고
    • Regulation of alphaketoglutarate dehydrogenase formation in Escherichia coli
    • Amarasingham CR, Davis BD. 1965. Regulation of alphaketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem 240:3664-3668.
    • (1965) J Biol Chem , vol.240 , pp. 3664-3668
    • Amarasingham, C.R.1    Davis, B.D.2
  • 2
    • 0026478079 scopus 로고
    • Complexes and complexities of the citric acid cycle in Escherichia coli
    • Guest JR, Russell GC. 1992. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr Top Cell Regul 33:231-247.
    • (1992) Curr Top Cell Regul , vol.33 , pp. 231-247
    • Guest, J.R.1    Russell, G.C.2
  • 3
    • 0024615877 scopus 로고
    • A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli
    • Iuchi S, Cameron DC, Lin EC. 1989. A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J Bacteriol 171:868-873.
    • (1989) J Bacteriol , vol.171 , pp. 868-873
    • Iuchi, S.1    Cameron, D.C.2    Lin, E.C.3
  • 4
    • 0024121496 scopus 로고
    • arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways
    • Iuchi S, Lin EC. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888-1892.
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 1888-1892
    • Iuchi, S.1    Lin, E.C.2
  • 5
    • 0014030357 scopus 로고
    • Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli
    • Gray CT, Wimpenny JW, Mossman MR. 1966. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta 117:33-41.
    • (1966) Biochim Biophys Acta , vol.117 , pp. 33-41
    • Gray, C.T.1    Wimpenny, J.W.2    Mossman, M.R.3
  • 6
    • 0026442487 scopus 로고
    • Oxygen-regulated gene expression in Escherichia coli. The 1992 Marjory Stephenson Prize Lecture
    • Guest JR. 1992. Oxygen-regulated gene expression in Escherichia coli. The 1992 Marjory Stephenson Prize Lecture. J Gen Microbiol 138:2253-2263.
    • (1992) J Gen Microbiol , vol.138 , pp. 2253-2263
    • Guest, J.R.1
  • 7
    • 0000044852 scopus 로고
    • Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase
    • Woods SA, Guest JR. 1987. Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase. FEMS Microbiol Lett 48:219-224.
    • (1987) FEMS Microbiol Lett , vol.48 , pp. 219-224
    • Woods, S.A.1    Guest, J.R.2
  • 8
    • 0014210667 scopus 로고
    • The regulation of anaplerotic enzymes in E. coli
    • Paris
    • Kornberg HL. 1967. The regulation of anaplerotic enzymes in E. coli. Bull Soc Chim Biol (Paris) 49:1479-1490.
    • (1967) Bull Soc Chim Biol , vol.49 , pp. 1479-1490
    • Kornberg, H.L.1
  • 9
    • 0013894468 scopus 로고
    • The role and control of the glyoxylate cycle in Escherichia coli
    • Kornberg HL. 1966. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1-11.
    • (1966) Biochem J , vol.99 , pp. 1-11
    • Kornberg, H.L.1
  • 10
    • 0023528507 scopus 로고
    • Molecular genetic aspects of the citric acid cycle of Escherichia coli
    • Miles JS, Guest JR. 1987. Molecular genetic aspects of the citric acid cycle of Escherichia coli. Biochem Soc Symp 54:45-65.
    • (1987) Biochem Soc Symp , vol.54 , pp. 45-65
    • Miles, J.S.1    Guest, J.R.2
  • 11
    • 31844453975 scopus 로고    scopus 로고
    • Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice
    • Tchawa Yimga M, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS. 2006. Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74:1130-1140.
    • (2006) Infect Immun , vol.74 , pp. 1130-1140
    • Tchawa Yimga, M.1    Leatham, M.P.2    Allen, J.H.3    Laux, D.C.4    Conway, T.5    Cohen, P.S.6
  • 12
    • 0021066245 scopus 로고
    • 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis
    • Smith MW, Neidhardt FC. 1983. 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol 156:81-88.
    • (1983) J Bacteriol , vol.156 , pp. 81-88
    • Smith, M.W.1    Neidhardt, F.C.2
  • 13
    • 0037216801 scopus 로고    scopus 로고
    • Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions
    • Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ. 2003. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185:204-209.
    • (2003) J Bacteriol , vol.185 , pp. 204-209
    • Alexeeva, S.1    Hellingwerf, K.J.2    Teixeira de Mattos, M.J.3
  • 14
    • 17644369246 scopus 로고    scopus 로고
    • Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
    • Perrenoud A, Sauer U. 2005. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171-3179.
    • (2005) J Bacteriol , vol.187 , pp. 3171-3179
    • Perrenoud, A.1    Sauer, U.2
  • 15
    • 0031864646 scopus 로고    scopus 로고
    • Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions
    • Prohl C, Wackwitz B, Vlad D, Unden G. 1998. Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions. Arch Microbiol 170:1-7.
    • (1998) Arch Microbiol , vol.170 , pp. 1-7
    • Prohl, C.1    Wackwitz, B.2    Vlad, D.3    Unden, G.4
  • 16
    • 29044445103 scopus 로고    scopus 로고
    • Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli
    • Shalel-Levanon S, San KY, Bennett GN. 2005. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng 7:364-374.
    • (2005) Metab Eng , vol.7 , pp. 364-374
    • Shalel-Levanon, S.1    San, K.Y.2    Bennett, G.N.3
  • 17
    • 0017852111 scopus 로고
    • Succinate dehydrogenasedependent nutritional requirement for succinate in mutants of Escherichia coli K12
    • Creaghan IT, Guest JR. 1978. Succinate dehydrogenasedependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol 107:1-13.
    • (1978) J Gen Microbiol , vol.107 , pp. 1-13
    • Creaghan, I.T.1    Guest, J.R.2
  • 18
    • 0024347026 scopus 로고
    • Use of the isocitrate dehydrogenase structural gene for attachment of e14 in Escherichia coli K-12
    • Hill CW, Gray JA, Brody H. 1989. Use of the isocitrate dehydrogenase structural gene for attachment of e14 in Escherichia coli K-12. J Bacteriol 171:4083-4084.
    • (1989) J Bacteriol , vol.171 , pp. 4083-4084
    • Hill, C.W.1    Gray, J.A.2    Brody, H.3
  • 19
    • 0031692138 scopus 로고    scopus 로고
    • Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli
    • Cunningham L, Guest JR. 1998. Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli. Microbiology 144:2113-2123.
    • (1998) Microbiology , vol.144 , pp. 2113-2123
    • Cunningham, L.1    Guest, J.R.2
  • 20
    • 0034819414 scopus 로고    scopus 로고
    • 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes
    • Brock M, Darley D, Textor S, Buckel W. 2001. 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur J Biochem 268:3577-3586.
    • (2001) Eur J Biochem , vol.268 , pp. 3577-3586
    • Brock, M.1    Darley, D.2    Textor, S.3    Buckel, W.4
  • 21
    • 0036449408 scopus 로고    scopus 로고
    • Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase
    • Brock M, Maerker C, Schutz A, Volker U, Buckel W. 2002. Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Eur J Biochem 269:6184-6194.
    • (2002) Eur J Biochem , vol.269 , pp. 6184-6194
    • Brock, M.1    Maerker, C.2    Schutz, A.3    Volker, U.4    Buckel, W.5
  • 22
    • 0026335805 scopus 로고
    • Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation
    • Henry MF, Cronan JE, Jr. 1991. Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol 222:843-849.
    • (1991) J Mol Biol , vol.222 , pp. 843-849
    • Henry, M.F.1    Cronan, J.E.2
  • 23
    • 0036148845 scopus 로고    scopus 로고
    • AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates
    • Blank L, Green J, Guest JR. 2002. AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology 148:133-146.
    • (2002) Microbiology , vol.148 , pp. 133-146
    • Blank, L.1    Green, J.2    Guest, J.R.3
  • 24
    • 0027310402 scopus 로고
    • Does Escherichia coli possess a second citrate synthase gene?
    • Patton AJ, Hough DW, Towner P, Danson MJ. 1993. Does Escherichia coli possess a second citrate synthase gene? Eur J Biochem 214:75-81.
    • (1993) Eur J Biochem , vol.214 , pp. 75-81
    • Patton, A.J.1    Hough, D.W.2    Towner, P.3    Danson, M.J.4
  • 25
    • 9144231953 scopus 로고    scopus 로고
    • 2-Methylcitratedependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein
    • Palacios S, Escalante-Semerena JC. 2004. 2-Methylcitratedependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 150:3877-3887.
    • (2004) Microbiology , vol.150 , pp. 3877-3887
    • Palacios, S.1    Escalante-Semerena, J.C.2
  • 26
    • 0037406882 scopus 로고    scopus 로고
    • Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol
    • Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802-2810.
    • (2003) J Bacteriol , vol.185 , pp. 2802-2810
    • Palacios, S.1    Starai, V.J.2    Escalante-Semerena, J.C.3
  • 27
    • 0026517563 scopus 로고
    • The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the ironresponsive-element-binding protein and isopropylmalate isomerases
    • Prodromou C, Artymiuk PJ, Guest JR. 1992. The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the ironresponsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem 204:599-609.
    • (1992) Eur J Biochem , vol.204 , pp. 599-609
    • Prodromou, C.1    Artymiuk, P.J.2    Guest, J.R.3
  • 28
    • 0021947222 scopus 로고
    • Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase
    • Sutherland P, McAlister-Henn L. 1985. Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase. J Bacteriol 163:1074-1079.
    • (1985) J Bacteriol , vol.163 , pp. 1074-1079
    • Sutherland, P.1    McAlister-Henn, L.2
  • 29
    • 0031033691 scopus 로고    scopus 로고
    • The aconitase family:three structural variations on a common theme
    • Gruer MJ, Artymiuk PJ, Guest JR. 1997. The aconitase family:three structural variations on a common theme. Trends Biochem Sci 22:3-6.
    • (1997) Trends Biochem Sci , vol.22 , pp. 3-6
    • Gruer, M.J.1    Artymiuk, P.J.2    Guest, J.R.3
  • 32
    • 0038629285 scopus 로고    scopus 로고
    • Insights into the evolution of allosteric properties.The NADH binding site of hexameric type II citrate synthases
    • Maurus R, Nguyen NT, Stokell DJ, Ayed A, Hultin PG, Duckworth HW, Brayer GD. 2003. Insights into the evolution of allosteric properties.The NADH binding site of hexameric type II citrate synthases. Biochemistry 42:5555-5565.
    • (2003) Biochemistry , vol.42 , pp. 5555-5565
    • Maurus, R.1    Nguyen, N.T.2    Stokell, D.J.3    Ayed, A.4    Hultin, P.G.5    Duckworth, H.W.6    Brayer, G.D.7
  • 33
    • 0035818406 scopus 로고    scopus 로고
    • Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes
    • Nguyen NT, Maurus R, Stokell DJ, Ayed A, Duckworth HW, Brayer GD. 2001. Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes. Biochemistry 40:13177-13187.
    • (2001) Biochemistry , vol.40 , pp. 13177-13187
    • Nguyen, N.T.1    Maurus, R.2    Stokell, D.J.3    Ayed, A.4    Duckworth, H.W.5    Brayer, G.D.6
  • 35
    • 0018570333 scopus 로고
    • Studies on a mutant form of Escherichia coli citrate synthase desensitised to allosteric effectors
    • Danson MJ, Harford S, Weitzman PD. 1979. Studies on a mutant form of Escherichia coli citrate synthase desensitised to allosteric effectors. Eur J Biochem 101:515-521.
    • (1979) Eur J Biochem , vol.101 , pp. 515-521
    • Danson, M.J.1    Harford, S.2    Weitzman, P.D.3
  • 36
    • 0022082642 scopus 로고
    • Characterization of ratecontrolling steps in vivo by use of an adjustable expression vector
    • Walsh K, Koshland DE, Jr. 1985. Characterization of ratecontrolling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci USA 82:3577-3581.
    • (1985) Proc Natl Acad Sci USA , vol.82 , pp. 3577-3581
    • Walsh, K.1    Koshland, D.E.2
  • 37
    • 0033572854 scopus 로고    scopus 로고
    • Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB)
    • Jordan PA, Tang Y, Bradbury AJ, Thomson AJ, Guest JR. 1999. Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). Biochem J 344:739-746.
    • (1999) Biochem J , vol.344 , pp. 739-746
    • Jordan, P.A.1    Tang, Y.2    Bradbury, A.J.3    Thomson, A.J.4    Guest, J.R.5
  • 38
    • 0037214441 scopus 로고    scopus 로고
    • Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion
    • Varghese S, Tang Y, Imlay JA. 2003. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221-230.
    • (2003) J Bacteriol , vol.185 , pp. 221-230
    • Varghese, S.1    Tang, Y.2    Imlay, J.A.3
  • 40
    • 19944400791 scopus 로고    scopus 로고
    • Switching aconitase B between catalytic and regulatory modes involves irondependent dimer formation
    • Tang Y, Guest JR, Artymiuk PJ, Green J. 2005. Switching aconitase B between catalytic and regulatory modes involves irondependent dimer formation. Mol Microbiol 56:1149-1158.
    • (2005) Mol Microbiol , vol.56 , pp. 1149-1158
    • Tang, Y.1    Guest, J.R.2    Artymiuk, P.J.3    Green, J.4
  • 41
    • 0036225829 scopus 로고    scopus 로고
    • Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression
    • Tang Y, Quail MA, Artymiuk PJ, Guest JR, Green J. 2002. Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology 148:1027-1037.
    • (2002) Microbiology , vol.148 , pp. 1027-1037
    • Tang, Y.1    Quail, M.A.2    Artymiuk, P.J.3    Guest, J.R.4    Green, J.5
  • 42
    • 1642565352 scopus 로고    scopus 로고
    • Posttranscriptional regulation of bacterial motility by aconitase proteins
    • Tang Y, Guest JR, Artymiuk PJ, Read RC, Green J. 2004. Posttranscriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51:1817-1826.
    • (2004) Mol Microbiol , vol.51 , pp. 1817-1826
    • Tang, Y.1    Guest, J.R.2    Artymiuk, P.J.3    Read, R.C.4    Green, J.5
  • 43
    • 0025304435 scopus 로고
    • Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli
    • Lee JH, Wendt JC, Shanmugam KT. 1990. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. J Bacteriol 172:2079-2087.
    • (1990) J Bacteriol , vol.172 , pp. 2079-2087
    • Lee, J.H.1    Wendt, J.C.2    Shanmugam, K.T.3
  • 44
    • 0029071575 scopus 로고
    • icdB mutants of Escherichia coli
    • Helling RB. 1995. icdB mutants of Escherichia coli. J Bacteriol 177:2592-2593.
    • (1995) J Bacteriol , vol.177 , pp. 2592-2593
    • Helling, R.B.1
  • 45
    • 14544286855 scopus 로고    scopus 로고
    • The selective cause of an ancient adaptation
    • Zhu G, Golding GB, Dean AM. 2005. The selective cause of an ancient adaptation. Science 307:1279-1282.
    • (2005) Science , vol.307 , pp. 1279-1282
    • Zhu, G.1    Golding, G.B.2    Dean, A.M.3
  • 46
    • 0018175760 scopus 로고
    • Aspects of the molecular biology of lipoamide dehydrogenase
    • Guest JR. 1978. Aspects of the molecular biology of lipoamide dehydrogenase. Adv Neurol 21:219-244.
    • (1978) Adv Neurol , vol.21 , pp. 219-244
    • Guest, J.R.1
  • 47
    • 0033790516 scopus 로고    scopus 로고
    • Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions
    • Perham RN. 2000. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69:961-1004.
    • (2000) Annu Rev Biochem , vol.69 , pp. 961-1004
    • Perham, R.N.1
  • 48
    • 0031668353 scopus 로고    scopus 로고
    • Swinging arms in multifunctional enzymes and the specificity of post-translational modification
    • Perham RN, Reche PA. 1998. Swinging arms in multifunctional enzymes and the specificity of post-translational modification. Biochem Soc Trans 26:299-303.
    • (1998) Biochem Soc Trans , vol.26 , pp. 299-303
    • Perham, R.N.1    Reche, P.A.2
  • 49
    • 28844462954 scopus 로고    scopus 로고
    • Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes
    • Murphy GE, Jensen GJ. 2005. Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure 13:1765-1767.
    • (2005) Structure , vol.13 , pp. 1765-1767
    • Murphy, G.E.1    Jensen, G.J.2
  • 50
    • 0025180164 scopus 로고
    • The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system
    • Steiert PS, Stauffer LT, Stauffer GV. 1990. The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172:6142-6144.
    • (1990) J Bacteriol , vol.172 , pp. 6142-6144
    • Steiert, P.S.1    Stauffer, L.T.2    Stauffer, G.V.3
  • 51
    • 0028067589 scopus 로고
    • Metabolic responses to substrate futile cycling in Escherichia coli
    • Chao YP, Liao JC. 1994. Metabolic responses to substrate futile cycling in Escherichia coli. J Biol Chem 269:5122-5126.
    • (1994) J Biol Chem , vol.269 , pp. 5122-5126
    • Chao, Y.P.1    Liao, J.C.2
  • 52
    • 0022482803 scopus 로고
    • Succinyl-CoA synthetase structure-function relationships and other considerations
    • Nishimura JS. 1986. Succinyl-CoA synthetase structure-function relationships and other considerations. Adv Enzymol Relat Areas Mol Biol 58:141-172.
    • (1986) Adv Enzymol Relat Areas Mol Biol , vol.58 , pp. 141-172
    • Nishimura, J.S.1
  • 53
    • 0033614008 scopus 로고    scopus 로고
    • A dimeric form of Escherichia coli succinyl-CoA synthetase produced by site-directed mutagenesis
    • Bailey DL, Fraser ME, Bridger WA, James MN, Wolodko WT. 1999. A dimeric form of Escherichia coli succinyl-CoA synthetase produced by site-directed mutagenesis. J Mol Biol 285:1655-1666.
    • (1999) J Mol Biol , vol.285 , pp. 1655-1666
    • Bailey, D.L.1    Fraser, M.E.2    Bridger, W.A.3    James, M.N.4    Wolodko, W.T.5
  • 54
    • 0033614003 scopus 로고    scopus 로고
    • A detailed structural description of Escherichia coli succinyl-CoA synthetase
    • Fraser ME, James MN, Bridger WA, Wolodko WT. 1999. A detailed structural description of Escherichia coli succinyl-CoA synthetase. J Mol Biol 285:1633-1653.
    • (1999) J Mol Biol , vol.285 , pp. 1633-1653
    • Fraser, M.E.1    James, M.N.2    Bridger, W.A.3    Wolodko, W.T.4
  • 55
    • 0037080163 scopus 로고    scopus 로고
    • Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase
    • Fraser ME, Joyce MA, Ryan DG, Wolodko WT. 2002. Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase. Biochemistry 41:537-546.
    • (2002) Biochemistry , vol.41 , pp. 537-546
    • Fraser, M.E.1    Joyce, M.A.2    Ryan, D.G.3    Wolodko, W.T.4
  • 56
    • 0034635193 scopus 로고    scopus 로고
    • ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography
    • Joyce MA, Fraser ME, James MN, Bridger WA, Wolodko WT. 2000. ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography. Biochemistry 39:17-25.
    • (2000) Biochemistry , vol.39 , pp. 17-25
    • Joyce, M.A.1    Fraser, M.E.2    James, M.N.3    Bridger, W.A.4    Wolodko, W.T.5
  • 57
    • 0024586696 scopus 로고
    • Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12
    • Mat-Jan F, Williams CR, Clark DP. 1989. Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215:276-280.
    • (1989) Mol Gen Genet , vol.215 , pp. 276-280
    • Mat-Jan, F.1    Williams, C.R.2    Clark, D.P.3
  • 58
    • 32944468345 scopus 로고    scopus 로고
    • Structure of free fumarase C from Escherichia coli
    • Weaver T. 2005. Structure of free fumarase C from Escherichia coli. Acta Crystallogr D Biol Crystallogr 61:1395-1401.
    • (2005) Acta Crystallogr D Biol Crystallogr , vol.61 , pp. 1395-1401
    • Weaver, T.1
  • 59
    • 0029854921 scopus 로고    scopus 로고
    • Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli
    • Weaver T, Banaszak L. 1996. Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli. Biochemistry 35:13955-13965.
    • (1996) Biochemistry , vol.35 , pp. 13955-13965
    • Weaver, T.1    Banaszak, L.2
  • 61
    • 0026778382 scopus 로고
    • Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon
    • Liochev SI, Fridovich I. 1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci USA 89:5892-5896.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 5892-5896
    • Liochev, S.I.1    Fridovich, I.2
  • 62
    • 0023567202 scopus 로고
    • Cloning and sequence of the mdh structural gene of Escherichia coli coding for malate dehydrogenase
    • Vogel RF, Entian KD, Mecke D. 1987. Cloning and sequence of the mdh structural gene of Escherichia coli coding for malate dehydrogenase. Arch Microbiol 149:36-42.
    • (1987) Arch Microbiol , vol.149 , pp. 36-42
    • Vogel, R.F.1    Entian, K.D.2    Mecke, D.3
  • 63
    • 0024002766 scopus 로고
    • Evolutionary relationships among the malate dehydrogenases
    • McAlister-Henn L. 1988. Evolutionary relationships among the malate dehydrogenases. Trends Biochem Sci 13:178-181.
    • (1988) Trends Biochem Sci , vol.13 , pp. 178-181
    • McAlister-Henn, L.1
  • 64
    • 0026706804 scopus 로고
    • Crystal structure of Escherichia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 A resolution
    • Hall MD, Levitt DG, Banaszak LJ. 1992. Crystal structure of Escherichia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 A resolution. J Mol Biol 226:867-882.
    • (1992) J Mol Biol , vol.226 , pp. 867-882
    • Hall, M.D.1    Levitt, D.G.2    Banaszak, L.J.3
  • 66
    • 0028607161 scopus 로고
    • Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli
    • Breiter DR, Resnik E, Banaszak LJ. 1994. Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli. Protein Sci 3:2023-2032.
    • (1994) Protein Sci , vol.3 , pp. 2023-2032
    • Breiter, D.R.1    Resnik, E.2    Banaszak, L.J.3
  • 67
    • 0014806785 scopus 로고
    • Malate dehydrogenase mutants in Escherichia coli K-12
    • Courtright JB, Henning U. 1970. Malate dehydrogenase mutants in Escherichia coli K-12. J Bacteriol 102:722-728.
    • (1970) J Bacteriol , vol.102 , pp. 722-728
    • Courtright, J.B.1    Henning, U.2
  • 68
    • 0034462324 scopus 로고    scopus 로고
    • Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli
    • van der Rest ME, Frank C, Molenaar D. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182:6892-6899.
    • (2000) J Bacteriol , vol.182 , pp. 6892-6899
    • van der Rest, M.E.1    Frank, C.2    Molenaar, D.3
  • 69
    • 0025370816 scopus 로고
    • Structure-function relationships in dihydrolipoamide acyltransferases
    • Reed LJ, Hackert ML. 1990. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem 265:8971-8974.
    • (1990) J Biol Chem , vol.265 , pp. 8971-8974
    • Reed, L.J.1    Hackert, M.L.2
  • 70
    • 0007623841 scopus 로고
    • Alpha-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide
    • Koike M, Reed LJ. 1960. Alpha-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide. J Biol Chem 235:1931-1938.
    • (1960) J Biol Chem , vol.235 , pp. 1931-1938
    • Koike, M.1    Reed, L.J.2
  • 71
    • 0014344705 scopus 로고
    • Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants
    • Herbert AA, Guest JR. 1968. Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol 53:363-381.
    • (1968) J Gen Microbiol , vol.53 , pp. 363-381
    • Herbert, A.A.1    Guest, J.R.2
  • 72
    • 0041177088 scopus 로고
    • Some properties of a mutant strain of Escherichia coli which requires lysine and methionine or lipoic acid for growth
    • Vise AB, Lacelles J. 1967. Some properties of a mutant strain of Escherichia coli which requires lysine and methionine or lipoic acid for growth. J Gen Microbiol 48:87-93.
    • (1967) J Gen Microbiol , vol.48 , pp. 87-93
    • Vise, A.B.1    Lacelles, J.2
  • 73
    • 26444504579 scopus 로고    scopus 로고
    • Function, attachment and synthesis of lipoic acid in Escherichia coli
    • Cronan JE, Zhao X, Jiang Y. 2005. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv Microb Physiol 50:103-146.
    • (2005) Adv Microb Physiol , vol.50 , pp. 103-146
    • Cronan, J.E.1    Zhao, X.2    Jiang, Y.3
  • 74
    • 0348229020 scopus 로고    scopus 로고
    • Assembly of the covalent linkage between lipoic acid and its cognate enzymes
    • Zhao X, Miller JR, Jiang Y, Marletta MA, Cronan JE. 2003. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem Biol 10:1293-1302.
    • (2003) Chem Biol , vol.10 , pp. 1293-1302
    • Zhao, X.1    Miller, J.R.2    Jiang, Y.3    Marletta, M.A.4    Cronan, J.E.5
  • 75
    • 0015024317 scopus 로고
    • Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase
    • Helling RB, Kukora JS. 1971. Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J Bacteriol 105:1224-1226.
    • (1971) J Bacteriol , vol.105 , pp. 1224-1226
    • Helling, R.B.1    Kukora, J.S.2
  • 76
    • 0019185245 scopus 로고
    • Identification of a novel genetic element in Escherichia coli K-12
    • Greener A, Hill CW. 1980. Identification of a novel genetic element in Escherichia coli K-12. J Bacteriol 144:312-321.
    • (1980) J Bacteriol , vol.144 , pp. 312-321
    • Greener, A.1    Hill, C.W.2
  • 77
    • 0021895121 scopus 로고
    • Excision and reintegration of the Escherichia coli K-12 chromosomal element e14
    • Brody H, Greener A, Hill CW. 1985. Excision and reintegration of the Escherichia coli K-12 chromosomal element e14. J Bacteriol 161:1112-1117.
    • (1985) J Bacteriol , vol.161 , pp. 1112-1117
    • Brody, H.1    Greener, A.2    Hill, C.W.3
  • 78
    • 23844508951 scopus 로고    scopus 로고
    • Genetic analysis of the requirements for SOS induction by nalidixic acid in Escherichia coli
    • Newmark KG, O'Reilly EK, Pohlhaus JR, Kreuzer KN. 2005. Genetic analysis of the requirements for SOS induction by nalidixic acid in Escherichia coli. Gene 356:69-76.
    • (2005) Gene , vol.356 , pp. 69-76
    • Newmark, K.G.1    O'Reilly, E.K.2    Pohlhaus, J.R.3    Kreuzer, K.N.4
  • 79
    • 0344443759 scopus 로고    scopus 로고
    • A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli
    • Fischer E, Sauer U. 2003. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446-46451.
    • (2003) J Biol Chem , vol.278 , pp. 46446-46451
    • Fischer, E.1    Sauer, U.2
  • 80
    • 0019514619 scopus 로고
    • Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli
    • Guest JR. 1981. Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. J Gen Microbiol 122:171-179.
    • (1981) J Gen Microbiol , vol.122 , pp. 171-179
    • Guest, J.R.1
  • 81
    • 0034712657 scopus 로고    scopus 로고
    • Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli
    • Haller T, Buckel T, Retey J, Gerlt JA. 2000. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622-4629.
    • (2000) Biochemistry , vol.39 , pp. 4622-4629
    • Haller, T.1    Buckel, T.2    Retey, J.3    Gerlt, J.A.4
  • 83
    • 0017642969 scopus 로고
    • Suppression of the succinate requirement of lipoamide dehydrogenase mutants of Escherichia coli by mutations affecting succinate dehydrogenase activity
    • Creaghan IT, Guest JR. 1977. Suppression of the succinate requirement of lipoamide dehydrogenase mutants of Escherichia coli by mutations affecting succinate dehydrogenase activity. J Gen Microbiol 102:183-194.
    • (1977) J Gen Microbiol , vol.102 , pp. 183-194
    • Creaghan, I.T.1    Guest, J.R.2
  • 84
    • 0023350473 scopus 로고
    • Regulation of citric acid cycle genes in facultative bacteria
    • Spencer ME, Guest JR. 1987. Regulation of citric acid cycle genes in facultative bacteria. Microbiol Sci 4:164-168.
    • (1987) Microbiol Sci , vol.4 , pp. 164-168
    • Spencer, M.E.1    Guest, J.R.2
  • 85
    • 0026326054 scopus 로고
    • Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria
    • Lin EC, Iuchi S. 1991. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet 25:361-387.
    • (1991) Annu Rev Genet , vol.25 , pp. 361-387
    • Lin, E.C.1    Iuchi, S.2
  • 86
    • 0028913511 scopus 로고
    • Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhRaceEF-lpd operon of Escherichia coli
    • Quail MA, Guest JR. 1995. Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhRaceEF-lpd operon of Escherichia coli. Mol Microbiol 15:519-529.
    • (1995) Mol Microbiol , vol.15 , pp. 519-529
    • Quail, M.A.1    Guest, J.R.2
  • 87
    • 0028177225 scopus 로고
    • The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex
    • Quail MA, Haydon DJ, Guest JR. 1994. The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12:95-104.
    • (1994) Mol Microbiol , vol.12 , pp. 95-104
    • Quail, M.A.1    Haydon, D.J.2    Guest, J.R.3
  • 88
    • 0035933597 scopus 로고    scopus 로고
    • Quinones as the redox signal for the arc two-component system of bacteria
    • Georgellis D, Kwon O, Lin EC. 2001. Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314-2316.
    • (2001) Science , vol.292 , pp. 2314-2316
    • Georgellis, D.1    Kwon, O.2    Lin, E.C.3
  • 89
    • 17644361910 scopus 로고    scopus 로고
    • Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo
    • Pena-Sandoval GR, Kwon O, Georgellis D. 2005. Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J Bacteriol 187:3267-3272.
    • (2005) J Bacteriol , vol.187 , pp. 3267-3272
    • Pena-Sandoval, G.R.1    Kwon, O.2    Georgellis, D.3
  • 91
    • 50549205127 scopus 로고
    • Repression and derepression of cytochrome c biosynthesis in Escherichia coli
    • Wimpenny JW, Ranlett M, Gray CT. 1963. Repression and derepression of cytochrome c biosynthesis in Escherichia coli. Biochim Biophys Acta 73:170-172.
    • (1963) Biochim Biophys Acta , vol.73 , pp. 170-172
    • Wimpenny, J.W.1    Ranlett, M.2    Gray, C.T.3
  • 93
    • 14244256556 scopus 로고    scopus 로고
    • Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity
    • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591-1603.
    • (2005) J Bacteriol , vol.187 , pp. 1591-1603
    • Weber, H.1    Polen, T.2    Heuveling, J.3    Wendisch, V.F.4    Hengge, R.5
  • 94
    • 0031438608 scopus 로고    scopus 로고
    • Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli
    • Cunningham L, Gruer MJ, Guest JR. 1997. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology 143:3795-3805.
    • (1997) Microbiology , vol.143 , pp. 3795-3805
    • Cunningham, L.1    Gruer, M.J.2    Guest, J.R.3
  • 95
    • 0028816422 scopus 로고
    • Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli
    • Xu J, Johnson RC. 1995. Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 177:938-947.
    • (1995) J Bacteriol , vol.177 , pp. 938-947
    • Xu, J.1    Johnson, R.C.2
  • 96
    • 4344634337 scopus 로고    scopus 로고
    • Positive selection for loss of RpoS function in Escherichia coli
    • Chen G, Patten CL, Schellhorn HE. 2004. Positive selection for loss of RpoS function in Escherichia coli. Mutat Res 554:193-203.
    • (2004) Mutat Res , vol.554 , pp. 193-203
    • Chen, G.1    Patten, C.L.2    Schellhorn, H.E.3
  • 97
    • 0035671034 scopus 로고    scopus 로고
    • Characterisation of the allelic variation in the rpoS gene in thirteen K12 and six other nonpathogenic Escherichia coli strains
    • Atlung T, Nielsen HV, Hansen FG. 2002. Characterisation of the allelic variation in the rpoS gene in thirteen K12 and six other nonpathogenic Escherichia coli strains. Mol Genet Genomics 266:873-881.
    • (2002) Mol Genet Genomics , vol.266 , pp. 873-881
    • Atlung, T.1    Nielsen, H.V.2    Hansen, F.G.3
  • 98
    • 0031844376 scopus 로고    scopus 로고
    • Negative regulation by RpoS: a case of sigma factor competition
    • Farewell A, Kvint K, Nyström T. 1998. Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29:1039-1051.
    • (1998) Mol Microbiol , vol.29 , pp. 1039-1051
    • Farewell, A.1    Kvint, K.2    Nyström, T.3
  • 99
    • 0037007078 scopus 로고    scopus 로고
    • A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli
    • Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620-4625.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 4620-4625
    • Masse, E.1    Gottesman, S.2
  • 100
    • 26444505976 scopus 로고    scopus 로고
    • Effect of RyhB small RNA on global iron use in Escherichia coli
    • Masse E, Vanderpool CK, Gottesman S. 2005. Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962-6971.
    • (2005) J Bacteriol , vol.187 , pp. 6962-6971
    • Masse, E.1    Vanderpool, C.K.2    Gottesman, S.3
  • 101
    • 0141860088 scopus 로고    scopus 로고
    • Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli
    • Masse E, Escorcia FE, Gottesman S. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374-2383.
    • (2003) Genes Dev , vol.17 , pp. 2374-2383
    • Masse, E.1    Escorcia, F.E.2    Gottesman, S.3
  • 102
    • 0023443062 scopus 로고
    • Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K-12: fur not only affects iron metabolism
    • Hantke K. 1987. Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K-12: fur not only affects iron metabolism. Mol Gen Genet 210:135-139.
    • (1987) Mol Gen Genet , vol.210 , pp. 135-139
    • Hantke, K.1
  • 103
    • 4644283164 scopus 로고    scopus 로고
    • Expression of ptsG encoding the major glucose transporter is regulated by ArcA in Escherichia coli
    • Jeong JY, Kim YJ, Cho N, Shin D, Nam TW, Ryu S, Seok YJ. 2004. Expression of ptsG encoding the major glucose transporter is regulated by ArcA in Escherichia coli. J Biol Chem 279:38513-38518.
    • (2004) J Biol Chem , vol.279 , pp. 38513-38518
    • Jeong, J.Y.1    Kim, Y.J.2    Cho, N.3    Shin, D.4    Nam, T.W.5    Ryu, S.6    Seok, Y.J.7
  • 104
    • 33646570920 scopus 로고    scopus 로고
    • In vitro reconstitution of catabolite repression in Escherichia coli
    • Park YH, Lee BR, Seok YJ, Peterkofsky A. 2006. In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem 281:6448-6454.
    • (2006) J Biol Chem , vol.281 , pp. 6448-6454
    • Park, Y.H.1    Lee, B.R.2    Seok, Y.J.3    Peterkofsky, A.4
  • 105
    • 27744589294 scopus 로고    scopus 로고
    • A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli
    • Mika F, Hengge R. 2005. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 19:2770-2781.
    • (2005) Genes Dev , vol.19 , pp. 2770-2781
    • Mika, F.1    Hengge, R.2
  • 106
    • 0028176450 scopus 로고
    • The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability
    • Lange R, Hengge-Aronis R. 1994. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600-1612.
    • (1994) Genes Dev , vol.8 , pp. 1600-1612
    • Lange, R.1    Hengge-Aronis, R.2
  • 107
    • 0024276112 scopus 로고
    • Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli
    • De Lorenzo V, Herrero M, Giovannini F, Neilands JB. 1988. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173:537-546.
    • (1988) Eur J Biochem , vol.173 , pp. 537-546
    • De Lorenzo, V.1    Herrero, M.2    Giovannini, F.3    Neilands, J.B.4
  • 108
    • 0031939765 scopus 로고    scopus 로고
    • Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulatorcontrolled process
    • Bouche S, Klauck E, Fischer D, Lucassen M, Jung K, Hengge-Aronis R. 1998. Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulatorcontrolled process. Mol Microbiol 27:787-795.
    • (1998) Mol Microbiol , vol.27 , pp. 787-795
    • Bouche, S.1    Klauck, E.2    Fischer, D.3    Lucassen, M.4    Jung, K.5    Hengge-Aronis, R.6
  • 109
    • 13244291348 scopus 로고    scopus 로고
    • Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli
    • Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH, Jr. 2005. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980-990.
    • (2005) J Bacteriol , vol.187 , pp. 980-990
    • Zhang, Z.1    Gosset, G.2    Barabote, R.3    Gonzalez, C.S.4    Cuevas, W.A.5    Saier, M.H.6
  • 110
    • 14644408112 scopus 로고    scopus 로고
    • The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation
    • Prasad Maharjan R, Yu PL, Seeto S, Ferenci T. 2005. The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Res Microbiol 156:178-183.
    • (2005) Res Microbiol , vol.156 , pp. 178-183
    • Prasad Maharjan, R.1    Yu, P.L.2    Seeto, S.3    Ferenci, T.4
  • 111
    • 0014529445 scopus 로고
    • Regulation of glyoxylate metabolism in Escherichia coli K-12
    • Ornston LN, Ornston MK. 1969. Regulation of glyoxylate metabolism in Escherichia coli K-12. J Bacteriol 98:1098-1108.
    • (1969) J Bacteriol , vol.98 , pp. 1098-1108
    • Ornston, L.N.1    Ornston, M.K.2
  • 112
    • 0033555555 scopus 로고    scopus 로고
    • Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter
    • Pellicer MT, Fernandez C, Badia J, Aguilar J, Lin EC, Baldom L. 1999. Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274:1745-1752.
    • (1999) J Biol Chem , vol.274 , pp. 1745-1752
    • Pellicer, M.T.1    Fernandez, C.2    Badia, J.3    Aguilar, J.4    Lin, E.C.5    Baldom, L.6
  • 114
    • 0041510314 scopus 로고    scopus 로고
    • Structure of the Escherichia coli malate synthase G:pyruvate:acetyl-coenzyme A abortive ternary complex at 1.95 A resolution
    • Anstrom DM, Kallio K, Remington SJ. 2003. Structure of the Escherichia coli malate synthase G:pyruvate:acetyl-coenzyme A abortive ternary complex at 1.95 A resolution. Protein Sci 12:1822-1832.
    • (2003) Protein Sci , vol.12 , pp. 1822-1832
    • Anstrom, D.M.1    Kallio, K.2    Remington, S.J.3
  • 115
    • 0023855559 scopus 로고
    • Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli
    • Robertson EF, Hoyt JC, Reeves HC. 1988. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli. J Biol Chem 263:2477-2782.
    • (1988) J Biol Chem , vol.263 , pp. 2477-2782
    • Robertson, E.F.1    Hoyt, J.C.2    Reeves, H.C.3
  • 116
    • 0028009449 scopus 로고
    • The importance of four histidine residues in isocitrate lyase from Escherichia coli
    • Diehl P, McFadden BA. 1994. The importance of four histidine residues in isocitrate lyase from Escherichia coli. J Bacteriol 176:927-931.
    • (1994) J Bacteriol , vol.176 , pp. 927-931
    • Diehl, P.1    McFadden, B.A.2
  • 117
    • 0021764180 scopus 로고
    • The phosphorylation of Escherichia coli isocitrate dehydrogenase in intact cells
    • Borthwick AC, Holms WH, Nimmo HG. 1984. The phosphorylation of Escherichia coli isocitrate dehydrogenase in intact cells. Biochem J 222:797-804.
    • (1984) Biochem J , vol.222 , pp. 797-804
    • Borthwick, A.C.1    Holms, W.H.2    Nimmo, H.G.3
  • 118
    • 0021741048 scopus 로고
    • The branch point effect. Ultrasensitivity and subsensitivity to metabolic control
    • LaPorte DC, Walsh K, Koshland DE, Jr. 1984. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem 259:14068-14075.
    • (1984) J Biol Chem , vol.259 , pp. 14068-14075
    • LaPorte, D.C.1    Walsh, K.2    Koshland, D.E.3
  • 119
    • 0016610261 scopus 로고
    • Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate
    • Bennett PM, Holms WH. 1975. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate. J Gen Microbiol 87:37-51.
    • (1975) J Gen Microbiol , vol.87 , pp. 37-51
    • Bennett, P.M.1    Holms, W.H.2
  • 120
    • 0014991329 scopus 로고
    • Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate
    • Holms WH, Bennett PM. 1971. Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. J Gen Microbiol 65:57-68.
    • (1971) J Gen Microbiol , vol.65 , pp. 57-68
    • Holms, W.H.1    Bennett, P.M.2
  • 121
    • 0020200584 scopus 로고
    • Reversible inactivation of isocitrate dehydrogenase in Escherichia coli
    • Holms WH, Nimmo HG. 1982. Reversible inactivation of isocitrate dehydrogenase in Escherichia coli. Biochem Soc Trans 10:319-320.
    • (1982) Biochem Soc Trans , vol.10 , pp. 319-320
    • Holms, W.H.1    Nimmo, H.G.2
  • 122
    • 0015147278 scopus 로고
    • The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli
    • Lowry OH, Carter J, Ward JB, Glaser L. 1971. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J Biol Chem 246:6511-6521.
    • (1971) J Biol Chem , vol.246 , pp. 6511-6521
    • Lowry, O.H.1    Carter, J.2    Ward, J.B.3    Glaser, L.4
  • 123
    • 0018397107 scopus 로고
    • Phosphorylation of isocitrate dehydrogenase of Escherichia coli
    • Garnak M, Reeves HC. 1979. Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203:1111-1112.
    • (1979) Science , vol.203 , pp. 1111-1112
    • Garnak, M.1    Reeves, H.C.2
  • 124
    • 0018696727 scopus 로고
    • Purification and properties of phosphorylated isocitrate dehydrogenase of Escherichia coli
    • Garnak M, Reeves HC. 1979. Purification and properties of phosphorylated isocitrate dehydrogenase of Escherichia coli. J Biol Chem 254:7915-7920.
    • (1979) J Biol Chem , vol.254 , pp. 7915-7920
    • Garnak, M.1    Reeves, H.C.2
  • 126
    • 0037005989 scopus 로고    scopus 로고
    • Protein kinases and protein phosphatases in prokaryotes: a genomic perspective
    • Kennelly PJ. 2002. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett 206:1-8.
    • (2002) FEMS Microbiol Lett , vol.206 , pp. 1-8
    • Kennelly, P.J.1
  • 127
    • 0020355238 scopus 로고
    • A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle
    • LaPorte DC, Koshland DE, Jr. 1982. A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. Nature 300:458-460.
    • (1982) Nature , vol.300 , pp. 458-460
    • LaPorte, D.C.1    Koshland, D.E.2
  • 128
    • 0025002460 scopus 로고
    • Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase
    • Dean AM, Koshland DE, Jr. 1990. Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase. Science 249:1044-1046.
    • (1990) Science , vol.249 , pp. 1044-1046
    • Dean, A.M.1    Koshland, D.E.2
  • 129
    • 0024380864 scopus 로고
    • Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding
    • Dean AM, Lee MH, Koshland DE, Jr. 1989. Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding. J Biol Chem 264:20482-20486.
    • (1989) J Biol Chem , vol.264 , pp. 20482-20486
    • Dean, A.M.1    Lee, M.H.2    Koshland, D.E.3
  • 130
    • 0026094361 scopus 로고
    • Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase:implications from the structures of magnesium-isocitrate and NADP+ complexes
    • Hurley JH, Dean AM, Koshland DE, Jr, Stroud RM. 1991. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase:implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30:8671-8678.
    • (1991) Biochemistry , vol.30 , pp. 8671-8678
    • Hurley, J.H.1    Dean, A.M.2    Koshland, D.E.3    Stroud, R.M.4
  • 131
  • 132
    • 0025217677 scopus 로고
    • Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme
    • Hurley JH, Dean AM, Thorsness PE, Koshland DE, Jr, Stroud RM. 1990. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J Biol Chem 265:3599-3602.
    • (1990) J Biol Chem , vol.265 , pp. 3599-3602
    • Hurley, J.H.1    Dean, A.M.2    Thorsness, P.E.3    Koshland, D.E.4    Stroud, R.M.5
  • 134
    • 0024024834 scopus 로고
    • Nucleotide sequence of aceK, the gene encoding isocitrate dehydrogenase kinase/phosphatase
    • Klumpp DJ, Plank DW, Bowdin LJ, Stueland CS, Chung T, LaPorte DC. 1988. Nucleotide sequence of aceK, the gene encoding isocitrate dehydrogenase kinase/phosphatase. J Bacteriol 170:2763-2769.
    • (1988) J Bacteriol , vol.170 , pp. 2763-2769
    • Klumpp, D.J.1    Plank, D.W.2    Bowdin, L.J.3    Stueland, C.S.4    Chung, T.5    LaPorte, D.C.6
  • 135
    • 0022392412 scopus 로고
    • A single gene codes for the kinase and phosphatase which regulate isocitrate dehydrogenase
    • LaPorte DC, Chung T. 1985. A single gene codes for the kinase and phosphatase which regulate isocitrate dehydrogenase. J Biol Chem 260:15291-15297.
    • (1985) J Biol Chem , vol.260 , pp. 15291-15297
    • LaPorte, D.C.1    Chung, T.2
  • 136
    • 0020592357 scopus 로고
    • Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation
    • LaPorte DC, Koshland DE, Jr. 1983. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature 305:286-290.
    • (1983) Nature , vol.305 , pp. 286-290
    • LaPorte, D.C.1    Koshland, D.E.2
  • 137
    • 0024211696 scopus 로고
    • The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step
    • Stueland CS, Gorden K, LaPorte DC. 1988. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step. J Biol Chem 263:19475-19479.
    • (1988) J Biol Chem , vol.263 , pp. 19475-19479
    • Stueland, C.S.1    Gorden, K.2    LaPorte, D.C.3
  • 138
    • 0024405978 scopus 로고
    • Mutation of the predicted ATP binding site inactivates both activities of isocitrate dehydrogenase kinase/phosphatase
    • Stueland CS, Ikeda TP, LaPorte DC. 1989. Mutation of the predicted ATP binding site inactivates both activities of isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 264:13775-13779.
    • (1989) J Biol Chem , vol.264 , pp. 13775-13779
    • Stueland, C.S.1    Ikeda, T.P.2    LaPorte, D.C.3
  • 139
    • 0023819835 scopus 로고
    • Photoaffinity labelling shows that Escherichia coli isocitrate dehydrogenase kinase/phosphatase contains a single ATP-binding site
    • Varela I, Nimmo HG. 1988. Photoaffinity labelling shows that Escherichia coli isocitrate dehydrogenase kinase/phosphatase contains a single ATP-binding site. FEBS Lett 231:361-365.
    • (1988) FEBS Lett , vol.231 , pp. 361-365
    • Varela, I.1    Nimmo, H.G.2
  • 140
    • 0023665375 scopus 로고
    • Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity
    • Stueland CS, Eck KR, Stieglbauer KT, LaPorte DC. 1987. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity. J Biol Chem 262:16095-16099.
    • (1987) J Biol Chem , vol.262 , pp. 16095-16099
    • Stueland, C.S.1    Eck, K.R.2    Stieglbauer, K.T.3    LaPorte, D.C.4
  • 141
    • 0025355399 scopus 로고
    • Regulation of the glyoxylate bypass operon: cloning and characterization of iclR
    • Sunnarborg A, Klumpp D, Chung T, LaPorte DC. 1990. Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol 172:2642-2649.
    • (1990) J Bacteriol , vol.172 , pp. 2642-2649
    • Sunnarborg, A.1    Klumpp, D.2    Chung, T.3    LaPorte, D.C.4
  • 142
    • 0022212761 scopus 로고
    • Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment
    • LaPorte DC, Thorsness PE, Koshland DE, Jr. 1985. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J Biol Chem 260:10563-10568.
    • (1985) J Biol Chem , vol.260 , pp. 10563-10568
    • LaPorte, D.C.1    Thorsness, P.E.2    Koshland, D.E.3
  • 143
    • 0019023852 scopus 로고
    • The purification of isocitrate dehydrogenase from Escherichia coli using immobilized dyes
    • Nimmo HG, Holms WH. 1980. The purification of isocitrate dehydrogenase from Escherichia coli using immobilized dyes. Biochem Soc Trans 8:390-391.
    • (1980) Biochem Soc Trans , vol.8 , pp. 390-391
    • Nimmo, H.G.1    Holms, W.H.2
  • 144
    • 0023703923 scopus 로고
    • Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map
    • Chung T, Klumpp DJ, LaPorte DC. 1988. Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map. J Bacteriol 170:386-392.
    • (1988) J Bacteriol , vol.170 , pp. 386-392
    • Chung, T.1    Klumpp, D.J.2    LaPorte, D.C.3
  • 145
    • 0021715523 scopus 로고
    • Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects
    • Goldbeter A, Koshland DE, Jr. 1984. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 259:14441-14447.
    • (1984) J Biol Chem , vol.259 , pp. 14441-14447
    • Goldbeter, A.1    Koshland, D.E.2
  • 146
    • 0026087175 scopus 로고
    • Isocitrate dehydrogenase kinase/phosphatase: aceK alleles that express kinase but not phosphatase activity
    • Ikeda T, LaPorte DC. 1991. Isocitrate dehydrogenase kinase/phosphatase: aceK alleles that express kinase but not phosphatase activity. J Bacteriol 173:1801-1806.
    • (1991) J Bacteriol , vol.173 , pp. 1801-1806
    • Ikeda, T.1    LaPorte, D.C.2
  • 147
    • 0029978882 scopus 로고    scopus 로고
    • Integration host factor amplifies the induction of the aceBAK operon of Escherichia coli by relieving IclR repression
    • Resnik E, Pan B, Ramani N, Freundlich M, LaPorte DC. 1996. Integration host factor amplifies the induction of the aceBAK operon of Escherichia coli by relieving IclR repression. J Bacteriol 178:2715-2717.
    • (1996) J Bacteriol , vol.178 , pp. 2715-2717
    • Resnik, E.1    Pan, B.2    Ramani, N.3    Freundlich, M.4    LaPorte, D.C.5
  • 148
    • 0018944061 scopus 로고
    • Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation
    • Maloy SR, Bohlander M, Nunn WD. 1980. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol 143:720-725.
    • (1980) J Bacteriol , vol.143 , pp. 720-725
    • Maloy, S.R.1    Bohlander, M.2    Nunn, W.D.3
  • 149
    • 0020059725 scopus 로고
    • Genetic regulation of the glyoxylate shunt in Escherichia coli K-12
    • Maloy SR, Nunn WD. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149:173-180.
    • (1982) J Bacteriol , vol.149 , pp. 173-180
    • Maloy, S.R.1    Nunn, W.D.2
  • 150
    • 0026495779 scopus 로고
    • Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator
    • Negre D, Cortay JC, Galinier A, Sauve P, Cozzone AJ. 1992. Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator. J Mol Biol 228:23-29.
    • (1992) J Mol Biol , vol.228 , pp. 23-29
    • Negre, D.1    Cortay, J.C.2    Galinier, A.3    Sauve, P.4    Cozzone, A.J.5
  • 151
    • 0032529898 scopus 로고    scopus 로고
    • Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms in Escherichia coli
    • el-Mansi EM. 1998. Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms in Escherichia coli. FEMS Microbiol Lett 166:333-339.
    • (1998) FEMS Microbiol Lett , vol.166 , pp. 333-339
    • el-Mansi, E.M.1
  • 152
    • 0031815062 scopus 로고    scopus 로고
    • FadR, transcriptional coordination of metabolic expediency
    • Cronan JE Jr, Subrahmanyam S. 1998. FadR, transcriptional coordination of metabolic expediency. Mol Microbiol 29:937-943.
    • (1998) Mol Microbiol , vol.29 , pp. 937-943
    • Cronan, J.E.1    Subrahmanyam, S.2
  • 153
    • 0035157890 scopus 로고    scopus 로고
    • Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene
    • Campbell JW, Cronan JE, Jr. 2001. Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183:5982-5990.
    • (2001) J Bacteriol , vol.183 , pp. 5982-5990
    • Campbell, J.W.1    Cronan, J.E.2
  • 154
    • 0031054314 scopus 로고    scopus 로고
    • In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor
    • Cronan JE, Jr. 1997. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819-1823.
    • (1997) J Bacteriol , vol.179 , pp. 1819-1823
    • Cronan, J.E.1
  • 155
    • 9344239860 scopus 로고    scopus 로고
    • Regulated expression of a repressor protein: FadR activates iclR
    • Gui L, Sunnarborg A, LaPorte DC. 1996. Regulated expression of a repressor protein: FadR activates iclR. J Bacteriol 178:4704-4709.
    • (1996) J Bacteriol , vol.178 , pp. 4704-4709
    • Gui, L.1    Sunnarborg, A.2    LaPorte, D.C.3
  • 156
    • 0030749971 scopus 로고    scopus 로고
    • Aerobic regulation of isocitrate dehydrogenase gene (icd) expression in Escherichia coli by the arcA and fnr gene products
    • Chao G, Shen J, Tseng CP, Park SJ, Gunsalus RP. 1997. Aerobic regulation of isocitrate dehydrogenase gene (icd) expression in Escherichia coli by the arcA and fnr gene products. J Bacteriol 179:4299-4304.
    • (1997) J Bacteriol , vol.179 , pp. 4299-4304
    • Chao, G.1    Shen, J.2    Tseng, C.P.3    Park, S.J.4    Gunsalus, R.P.5
  • 157
    • 0024673216 scopus 로고
    • Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon
    • Chin AM, Feldheim DA, Saier MH, Jr. 1989. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol 171:2424-2434.
    • (1989) J Bacteriol , vol.171 , pp. 2424-2434
    • Chin, A.M.1    Feldheim, D.A.2    Saier, M.H.3
  • 158
    • 0027444619 scopus 로고
    • In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium
    • Ramseier TM, Negre D, Cortay JC, Scarabel M, Cozzone AJ, Saier MH, Jr. 1993. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234:28-44.
    • (1993) J Mol Biol , vol.234 , pp. 28-44
    • Ramseier, T.M.1    Negre, D.2    Cortay, J.C.3    Scarabel, M.4    Cozzone, A.J.5    Saier, M.H.6
  • 159
    • 0027227350 scopus 로고
    • Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation
    • Chung T, Resnik E, Stueland C, LaPorte DC. 1993. Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation. J Bacteriol 175:4572-4575.
    • (1993) J Bacteriol , vol.175 , pp. 4572-4575
    • Chung, T.1    Resnik, E.2    Stueland, C.3    LaPorte, D.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.