메뉴 건너뛰기




Volumn 2130, Issue , 2001, Pages 719-724

Online symbolic-sequence prediction with discrete-time recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; FORECASTING; LOGIC CIRCUITS; NEURAL NETWORKS;

EID: 84958963592     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44668-0_100     Document Type: Conference Paper
Times cited : (9)

References (14)
  • 2
    • 0034268994 scopus 로고    scopus 로고
    • Stable-encoding of finite-state machines in discretetimerecurrent neural nets with sigmoid units
    • Carrasco, R. C. et al. (2000), “Stable-encoding of finite-state machines in discretetime recurrent neural nets with sigmoid units”, Neural Computation, 12(9).
    • (2000) Neural Computation , vol.12 , Issue.9
    • Carrasco, R.C.1
  • 4
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. (1990), “Finding structure in time”, Cognitive Science, 14, 179–211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0003575034 scopus 로고
    • Untersuchungen zu dynamischen neuronalen Netzen
    • Technische Universität München
    • Hochreiter, J. (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Institut für Informatik, Technische Universität München.
    • (1991) Diploma Thesis, Institut für Informatik
    • Hochreiter, J.1
  • 9
    • 0026408191 scopus 로고
    • Decoupled extended Kalman filtertraining of feedforward layered networks
    • Puskorius, G. V. and L. A. Feldkamp (1991), “Decoupled extended Kalman filter training of feedforward layered networks”, in International Joint Conference on Neural Networks, volume 1, pp. 771–777.
    • (1991) International Joint Conference on Neural Networks , vol.1 , pp. 771-777
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 10
    • 0000329355 scopus 로고
    • A recurrent error propagation speechrecognition system
    • Robinson, A. J. and F. Fallside (1991), “A recurrent error propagation speech recognition system”, Computer Speech and Language, 5, 259–274.
    • (1991) Computer Speech and Language , vol.5 , pp. 259-274
    • Robinson, A.J.1    Fallside, F.2
  • 12
    • 0001274675 scopus 로고
    • Learning sequential structures with the realtimerecurrent learning algorithm
    • Smith, A. W. and D. Zipser (1989), “Learning sequential structures with the realtime recurrent learning algorithm”, International Journal of Neural Systems, 1(2).
    • (1989) International Journal of Neural Systems , vol.1 , Issue.2
    • Smith, A.W.1    Zipser, D.2
  • 13
    • 0033097317 scopus 로고    scopus 로고
    • Extracting finite-state representations from recurrentneural networks trained on chaotic symbolic sequences
    • Tiňo, P., M. Köteles (1999), “Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences”, IEEE Transactions on Neural Networks, 10(2), pp. 284–302.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 284-302
    • Tiňo, P.1    Köteles, M.2
  • 14
    • 84969330348 scopus 로고
    • A learning algorithm for continuallytraining recurrent neural networks
    • Williams, R. J. and R. A. Zipser (1989), “A learning algorithm for continually training recurrent neural networks”, Neural Computation, 1, 270–280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.