메뉴 건너뛰기




Volumn 1654, Issue , 1999, Pages 317-330

Markov random field modelling of fmri data using a mean field em-algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; IMAGE SEGMENTATION; LEARNING SYSTEMS; MAGNETIC RESONANCE; MARKOV PROCESSES; MEAN FIELD THEORY;

EID: 84958750498     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-48432-9_22     Document Type: Conference Paper
Times cited : (5)

References (38)
  • 2
    • 0027288454 scopus 로고
    • Processing strategies for time-course data sets in functional MRI of the human brain
    • P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde. Processing strategies for time-course data sets in functional MRI of the human brain. Magnetic Resonance in Medicine, 30:161–173, 1993.
    • (1993) Magnetic Resonance in Medicine , vol.30 , pp. 161-173
    • Bandettini, P.A.1    Jesmanowicz, A.2    Wong, E.C.3    Hyde, J.S.4
  • 6
    • 0021819411 scopus 로고
    • A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm
    • V. Cerńy. A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.
    • (1985) Journal of Optimization Theory and Applications , vol.45 , pp. 41-51
    • Cerńy, V.1
  • 9
    • 0032211488 scopus 로고    scopus 로고
    • FMRI signal restoration using an edge preserving spatio-temporal Markov random field
    • X. Descombes, F. Kruggel, and D. Y. von Cramon. fMRI signal restoration using an edge preserving spatio-temporal Markov random field. NeuroImage, 8:340–348, 1998.
    • (1998) Neuroimage , vol.8 , pp. 340-348
    • Descombes, X.1    Kruggel, F.2    Von Cramon, D.Y.3
  • 11
    • 84872062276 scopus 로고    scopus 로고
    • Available on the Internet at URL, version 2.0
    • J. W. Eaton et al. GNU Octave. Available on the Internet at URL: http://www.che.wisc.edu/octave/, 1998. version 2.0.
    • (1998) GNU Octave
    • Eaton, J.W.1
  • 14
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian segmentation of images
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian segmentation of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 15
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Z. Gharamani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 29:245–273, 1997.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Gharamani, Z.1    Jordan, M.I.2
  • 17
    • 0003860033 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science, University of Toronto, March, PRECARN ARK Project Technical Report ARK96-PUB-54
    • A. Jepson and M. Black. Mixture models for image representation. Technical report, Department of Computer Science, University of Toronto, March 1996. PRECARN ARK Project Technical Report ARK96-PUB-54.
    • (1996) Mixture Models for Image Representation
    • Jepson, A.1    Black, M.2
  • 18
    • 0004283231 scopus 로고    scopus 로고
    • Learning in Graphical Models
    • editor, MIT Press, 1998. Proceedings of the NATO Advanced Study Institute, Erice, Italy
    • M. I. Jordan, editor. Learning in Graphical Models. Adaptive Computation and Machine Learning. MIT Press, 1998. Proceedings of the NATO Advanced Study Institute, Erice, Italy, 1996.
    • (1996) Adaptive Computation and Machine Learning
    • Jordan, M.I.1
  • 20
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick and C. D and M. P. Vecchi Gellatt Jr. Optimization by simulated annealing. Science, 220:671–680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    D, C.2    Vecchi Gellatt, M.P.3
  • 22
    • 84958816884 scopus 로고    scopus 로고
    • Modelling the hemodynamic response in single trial fMRI experiments
    • Under review
    • F. Kruggel and D. Y. von Cramon. Modelling the hemodynamic response in single trial fMRI experiments. Magnetic Resonance in Medicine, 1998. Under review.
    • (1998) Magnetic Resonance in Medicine
    • Kruggel, F.1    Von Cramon, D.Y.2
  • 25
    • 0002780886 scopus 로고    scopus 로고
    • Auditory sentence comprehension: Different BOLD patterns modulated by task demands as revealed by a ‘single-trial’ fMRI-study
    • M. Meyer, A. D. Friederici, D. Y. von Cramon, F. Kruggel, and C. J. Wiggins. Auditory sentence comprehension: Different BOLD patterns modulated by task demands as revealed by a ‘single-trial’ fMRI-study. NeuroImage, 7(4):S181, 1998.
    • (1998) Neuroimage , vol.7 , Issue.4
    • Meyer, M.1    Friederici, A.D.2    Von Cramon, D.Y.3    Kruggel, F.4    Wiggins, C.J.5
  • 28
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.R.1
  • 29
    • 0031903335 scopus 로고    scopus 로고
    • Modeling hemodynamic response for analysis of functional MRI time-series
    • J. C. Rajapakse, F. Kruggel, J. M. Maisog, and D. Y. von Cramon. Modeling hemodynamic response for analysis of functional MRI time-series. Human Brain Mapping, 6:283–300, 1998.
    • (1998) Human Brain Mapping , vol.6 , pp. 283-300
    • Rajapakse, J.C.1    Kruggel, F.2    Maisog, J.M.3    Von Cramon, D.Y.4
  • 30
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 31
    • 85156241149 scopus 로고    scopus 로고
    • Exploiting tractable substructures in intractable networks
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press
    • L. K. Saul and M. I. Jordan. Exploiting tractable substructures in intractable networks. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 486–492. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 486-492
    • Saul, L.K.1    Jordan, M.I.2
  • 32
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic independence networks for hidden Markov probability models
    • P. Smyth, D. Heckerman, and M. I. Jordan. Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9:227–270, 1997.
    • (1997) Neural Computation , vol.9 , pp. 227-270
    • Smyth, P.1    Heckerman, D.2    Jordan, M.I.3
  • 34
    • 0004207265 scopus 로고    scopus 로고
    • Springer Series in Information Sciences. Springer-Verlag
    • N. Wu. The Maximum Entropy Method. Springer Series in Information Sciences. Springer-Verlag, 1997.
    • (1997) The Maximum Entropy Method
    • Wu, N.1
  • 35
    • 0001375902 scopus 로고
    • Statistical physics mixtures of distributions, and the EM algorithm
    • A. L. Yuille, P. Stolorz, and J. Utans. Statistical physics mixtures of distributions, and the EM algorithm. Neural Computation, 6:334–340, 1994.
    • (1994) Neural Computation , vol.6 , pp. 334-340
    • Yuille, A.L.1    Stolorz, P.2    Utans, J.3
  • 36
    • 0026938712 scopus 로고
    • The mean field theory in EM procedures for Markov random fields
    • J. Zhang. The mean field theory in EM procedures for Markov random fields. IEEE Transactions on Signal Processing, 40(10):2570–2583, 1992.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.10 , pp. 2570-2583
    • Zhang, J.1
  • 37
    • 0030389199 scopus 로고
    • The convergence of mean field procedures for MRF’s
    • J. Zhang. The convergence of mean field procedures for MRF’s. IEEE Transactions on Image Processing, 5(12):1662–1665, 1995.
    • (1995) IEEE Transactions on Image Processing , vol.5 , Issue.12 , pp. 1662-1665
    • Zhang, J.1
  • 38
    • 0030194148 scopus 로고    scopus 로고
    • The application of the Gibbs-Bogoliubov-Feynman inequality in mean field calculations for Markov random fields
    • J. Zhang. The application of the Gibbs-Bogoliubov-Feynman inequality in mean field calculations for Markov random fields. IEEE Transactions on Image Processing, 5(7):1208–214, 1996.
    • (1996) IEEE Transactions on Image Processing , vol.5 , Issue.7 , pp. 1208-1214
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.