메뉴 건너뛰기




Volumn 19-23-Oct-2015, Issue , 2015, Pages 1411-1420

Short text similarity with word embeddings

Author keywords

Short text similarity; Word embeddings

Indexed keywords

FORESTRY; IMAGE MATCHING; KNOWLEDGE MANAGEMENT; NATURAL LANGUAGE PROCESSING SYSTEMS; SYNTACTICS; VECTOR SPACES; VECTORS;

EID: 84958242584     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2806416.2806475     Document Type: Conference Paper
Times cited : (439)

References (40)
  • 3
    • 60249097466 scopus 로고    scopus 로고
    • A new sentence similarity measure and sentence based extractive technique for automatic text summarization
    • R. M. Aliguliyev. A new sentence similarity measure and sentence based extractive technique for automatic text summarization. Expert Systems with Applications, 2009.
    • (2009) Expert Systems with Applications
    • Aliguliyev, R.M.1
  • 4
    • 84937605047 scopus 로고    scopus 로고
    • Semantic compositionality in tree kernels
    • P. Annesi, D. Croce, and R. Basili. Semantic compositionality in tree kernels. In CIKM 2014, 2014.
    • (2014) CIKM 2014
    • Annesi, P.1    Croce, D.2    Basili, R.3
  • 5
    • 84963716749 scopus 로고    scopus 로고
    • Simcompass: Using deep learning word embeddings to assess cross-level similarity
    • C. Banea, D. Chen, R. Mihalcea, C. Cardie, and J. Wiebe. Simcompass: Using deep learning word embeddings to assess cross-level similarity. SemEval 2014, 2014.
    • (2014) SemEval 2014
    • Banea, C.1    Chen, D.2    Mihalcea, R.3    Cardie, C.4    Wiebe, J.5
  • 6
    • 85007314681 scopus 로고    scopus 로고
    • Ukp: Computing semantic textual similarity by combining multiple content similarity measures
    • D. Bär, C. Biemann, I. Gurevych, and T. Zesch. Ukp: Computing semantic textual similarity by combining multiple content similarity measures. In SemEval 2012, 2012.
    • (2012) SemEval 2012
    • Bär, D.1    Biemann, C.2    Gurevych, I.3    Zesch, T.4
  • 7
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
    • M. Baroni, G. Dinu, and G. Kruszewski. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL 2014, 2014.
    • (2014) ACL 2014
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 13
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML 2008, 2008.
    • (2008) ICML 2008
    • Collobert, R.1    Weston, J.2
  • 15
    • 85105937549 scopus 로고    scopus 로고
    • Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources
    • B. Dolan, C. Quirk, and C. Brockett. Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. In COLING 2004, 2004.
    • (2004) COLING 2004
    • Dolan, B.1    Quirk, C.2    Brockett, C.3
  • 17
    • 84860616508 scopus 로고    scopus 로고
    • A semantic similarity approach to paraphrase detection
    • S. Fernando and M. Stevenson. A semantic similarity approach to paraphrase detection. CLUK 2008, 2008.
    • (2008) CLUK 2008
    • Fernando, S.1    Stevenson, M.2
  • 18
    • 84908608946 scopus 로고    scopus 로고
    • A new sentence similarity assessment measure based on a three-layer sentence representation
    • R. Ferreira, R. D. Lins, F. Freitas, S. J. Simske, and M. Riss. A new sentence similarity assessment measure based on a three-layer sentence representation. In DocEng 2014, 2014.
    • (2014) DocEng 2014
    • Ferreira, R.1    Lins, R.D.2    Freitas, F.3    Simske, S.J.4    Riss, M.5
  • 20
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. In NIPS 2014, 2014.
    • (2014) NIPS 2014
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 21
    • 49149122316 scopus 로고    scopus 로고
    • Semantic text similarity using corpus-based word similarity and string similarity
    • A. Islam and D. Inkpen. Semantic text similarity using corpus-based word similarity and string similarity. TKDD, 2008.
    • (2008) TKDD
    • Islam, A.1    Inkpen, D.2
  • 22
    • 84923632271 scopus 로고    scopus 로고
    • Discriminative improvements to distributional sentence similarity
    • Y. Ji and J. Eisenstein. Discriminative improvements to distributional sentence similarity. In EMNLP, 2013.
    • (2013) EMNLP
    • Ji, Y.1    Eisenstein, J.2
  • 24
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Y. Kim. Convolutional neural networks for sentence classification. In EMNLP 2014, 2014.
    • (2014) EMNLP 2014
    • Kim, Y.1
  • 28
    • 84865040818 scopus 로고    scopus 로고
    • Measuring semantic similarity in short texts through greedy pairing and word semantics
    • M. C. Lintean and V. Rus. Measuring semantic similarity in short texts through greedy pairing and word semantics. In FLAIRS Conference, 2012.
    • (2012) FLAIRS Conference
    • Lintean, M.C.1    Rus, V.2
  • 30
    • 36348995566 scopus 로고    scopus 로고
    • Similarity measures for short segments of text
    • D. Metzler, S. Dumais, and C. Meek. Similarity measures for short segments of text. In ECIR 2007, 2007.
    • (2007) ECIR 2007
    • Metzler, D.1    Dumais, S.2    Meek, C.3
  • 31
    • 33750057514 scopus 로고    scopus 로고
    • Corpus-based and knowledge-based measures of text semantic similarity
    • R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based measures of text semantic similarity. In AAAI, 2006.
    • (2006) AAAI
    • Mihalcea, R.1    Corley, C.2    Strapparava, C.3
  • 33
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS 2013, 2013.
    • (2013) NIPS 2013
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 35
    • 85117218533 scopus 로고    scopus 로고
    • Monolingual machine translation for paraphrase generation
    • C. Quirk, C. Brockett, and W. B. Dolan. Monolingual machine translation for paraphrase generation. In EMNLP 2004, 2004.
    • (2004) EMNLP 2004
    • Quirk, C.1    Brockett, C.2    Dolan, W.B.3
  • 39
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS 2011, 2011.
    • (2011) NIPS 2011
    • Socher, R.1    Huang, E.H.2    Pennin, J.3    Manning, C.D.4    Ng, A.Y.5
  • 40
    • 84898956227 scopus 로고    scopus 로고
    • Reasoning with neural tensor networks for knowledge base completion
    • R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural tensor networks for knowledge base completion. In NIPS 2013, 2013.
    • (2013) NIPS 2013
    • Socher, R.1    Chen, D.2    Manning, C.D.3    Ng, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.