메뉴 건너뛰기




Volumn 116, Issue , 2016, Pages 646-655

Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning

Author keywords

Building energy prediction; Deep Belief Networks; Machine learning; Reinforcement learning; Transfer learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BEHAVIORAL RESEARCH; BUILDINGS; COMPLEX NETWORKS; DECISION MAKING; ECONOMICS; ELECTRIC POWER TRANSMISSION NETWORKS; ENERGY UTILIZATION; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; REINFORCEMENT LEARNING; STOCHASTIC SYSTEMS;

EID: 84958191195     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2016.01.030     Document Type: Article
Times cited : (153)

References (42)
  • 1
    • 84888413374 scopus 로고    scopus 로고
    • Thermal comfort and building energy consumption implications - a review
    • L. Yang, H. Yan, and J.C. Lam Thermal comfort and building energy consumption implications - a review Appl. Energy 115 2014 164 173 10.1016/j.apenergy.2013.10.062
    • (2014) Appl. Energy , vol.115 , pp. 164-173
    • Yang, L.1    Yan, H.2    Lam, J.C.3
  • 3
    • 84869871543 scopus 로고    scopus 로고
    • Building operation and energy performance: monitoring, analysis and optimisation toolkit
    • A. Costa, M.M. Keane, J.I. Torrens, and E. Corry Building operation and energy performance: monitoring, analysis and optimisation toolkit Appl. Energy 101 2013 310 316 10.1016/j.apenergy.2011.10.037
    • (2013) Appl. Energy , vol.101 , pp. 310-316
    • Costa, A.1    Keane, M.M.2    Torrens, J.I.3    Corry, E.4
  • 6
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • W.-C. Hong Electric load forecasting by support vector model Appl. Math. Model. 33 5 2009 2444 2454
    • (2009) Appl. Math. Model. , vol.33 , Issue.5 , pp. 2444-2454
    • Hong, W.-C.1
  • 7
    • 75449093272 scopus 로고    scopus 로고
    • Artificial neural networks for energy analysis of office buildings with daylighting
    • S. Wong, K.K. Wan, and T.N. Lam Artificial neural networks for energy analysis of office buildings with daylighting Appl. Energy 87 2 2010 551 557
    • (2010) Appl. Energy , vol.87 , Issue.2 , pp. 551-557
    • Wong, S.1    Wan, K.K.2    Lam, T.N.3
  • 8
    • 64549099947 scopus 로고    scopus 로고
    • Artificial neural networks in energy applications in buildings
    • S.A. Kalogirou Artificial neural networks in energy applications in buildings Int. J. Low-Carbon Technol. 1 3 2006 201 216
    • (2006) Int. J. Low-Carbon Technol. , vol.1 , Issue.3 , pp. 201-216
    • Kalogirou, S.A.1
  • 9
    • 84863682558 scopus 로고    scopus 로고
    • A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting
    • T. Mestekemper, G. Kauermann, and M.S. Smith A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting Int. J. Forecast. 29 1 2013 1 12
    • (2013) Int. J. Forecast. , vol.29 , Issue.1 , pp. 1-12
    • Mestekemper, T.1    Kauermann, G.2    Smith, M.S.3
  • 10
    • 84902322303 scopus 로고    scopus 로고
    • Large-scale probabilistic forecasting in energy systems using sparse gaussian conditional random fields
    • December 10-13, 2013, Firenze, Italy
    • M. Wytock, and J.Z. Kolter Large-scale probabilistic forecasting in energy systems using sparse gaussian conditional random fields Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013 December 10-13, 2013, Firenze, Italy 2013 1019 1024
    • (2013) Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013 , pp. 1019-1024
    • Wytock, M.1    Kolter, J.Z.2
  • 12
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • M. Aydinalp-Koksal, and V.I. Ugursal Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector Appl. Energy 85 4 2008 271 296
    • (2008) Appl. Energy , vol.85 , Issue.4 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 14
    • 84855292182 scopus 로고    scopus 로고
    • Energy models for demand forecasting - a review
    • L. Suganthi, and A.A. Samuel Energy models for demand forecasting - a review Renew. Sustain. Energy Rev. 16 2 2012 1223 1240
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.2 , pp. 1223-1240
    • Suganthi, L.1    Samuel, A.A.2
  • 16
    • 77955152986 scopus 로고    scopus 로고
    • Artificial intelligence for energy conservation in buildings
    • A.I. Dounis Artificial intelligence for energy conservation in buildings Adv. Build. Energy Res. 4 1 2010 267 299
    • (2010) Adv. Build. Energy Res. , vol.4 , Issue.1 , pp. 267-299
    • Dounis, A.I.1
  • 17
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: a review
    • A. Foucquier, S. Robert, F. Suard, L. Stéphan, and A. Jay State of the art in building modelling and energy performances prediction: a review Renew. Sustain. Energy Rev. 23 0 2013 272 288
    • (2013) Renew. Sustain. Energy Rev. , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stéphan, L.4    Jay, A.5
  • 18
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • H. xiang Zhao, and F. Magoulès A review on the prediction of building energy consumption Renew. Sustain. Energy Rev. 16 6 2012 3586 3592
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.6 , pp. 3586-3592
    • Xiang Zhao, H.1    Magoulès, F.2
  • 19
    • 64049106701 scopus 로고    scopus 로고
    • Reinforcement learning versus model predictive control: a comparison on a power system problem
    • D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel Reinforcement learning versus model predictive control: a comparison on a power system problem IEEE Trans. Syst. Man Cybern. B: Cybern. 39 2 2009 517 529
    • (2009) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.39 , Issue.2 , pp. 517-529
    • Ernst, D.1    Glavic, M.2    Capitanescu, F.3    Wehenkel, L.4
  • 20
    • 85156187730 scopus 로고    scopus 로고
    • Improving elevator performance using reinforcement learning
    • MIT Press
    • R. Crites, and A. Barto Improving elevator performance using reinforcement learning in: Advances in Neural Information Processing Systems, vol. 8 1996 MIT Press 1017 1023
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1017-1023
    • Crites, R.1    Barto, A.2
  • 22
    • 32844474095 scopus 로고    scopus 로고
    • Reinforcement learning with factored states and actions
    • B. Sallans, and G.E. Hinton Reinforcement learning with factored states and actions J. Mach. Learn. Res. 5 2004 1063 1088
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1063-1088
    • Sallans, B.1    Hinton, G.E.2
  • 27
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • also published as a book. Now Publishers, 2009
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 1 2009 1 127 also published as a book. Now Publishers, 2009
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 31
    • 84899471842 scopus 로고    scopus 로고
    • Learning exploration/exploitation strategies for single trajectory reinforcement learning
    • M. Castronovo, F. Maes, R. Fonteneau, and D. Ernst Learning exploration/exploitation strategies for single trajectory reinforcement learning in: EWRL, Vol. 24 of JMLR Proceedings 2012 1 10
    • (2012) EWRL, Vol. 24 of JMLR Proceedings , pp. 1-10
    • Castronovo, M.1    Maes, F.2    Fonteneau, R.3    Ernst, D.4
  • 32
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, and R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 33
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, and Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527 1554
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 34
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • G.W. Taylor, G.E. Hinton, and S.T. Roweis Two distributed-state models for generating high-dimensional time series J. Mach. Learn. Res. 12 2011 1025 1068
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 36
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, and S. Osindero A fast learning algorithm for deep belief nets Neural Comput. 18 2006 2006
    • (2006) Neural Comput. , vol.18 , pp. 2006
    • Hinton, G.E.1    Osindero, S.2
  • 37
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 39
    • 84958227685 scopus 로고    scopus 로고
    • last visit 17.10.15
    • B.G.E. Company. http://www.supplier.bge.com (last visit 17.10.15).
    • B.G.E. Company1
  • 40
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit
    • F.J. Massey The Kolmogorov-Smirnov test for goodness of fit J. Am. Stat. Assoc. 46 253 1951 68 78
    • (1951) J. Am. Stat. Assoc. , vol.46 , Issue.253 , pp. 68-78
    • Massey, F.J.1
  • 42
    • 0016750222 scopus 로고
    • Robust estimation and outlier detection with correlation coefficients
    • J.R.K. Susan, J. Devlin, and R. Gnanadesikan Robust estimation and outlier detection with correlation coefficients Biometrika 62 3 1975 531 545
    • (1975) Biometrika , vol.62 , Issue.3 , pp. 531-545
    • Susan, J.R.K.1    Devlin, J.2    Gnanadesikan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.