메뉴 건너뛰기




Volumn 309-310, Issue , 2015, Pages 60-63

Garson's method trumps Olden's method in every case - How to determine relative importance of input-variables in nonlinear regression with artificial neural networks

Author keywords

Connection weight method; Garson's method; Method comparison; Nonlinear regression; Relative importance

Indexed keywords

NEURAL NETWORKS;

EID: 84958170265     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2015.04.015     Document Type: Article
Times cited : (33)

References (21)
  • 3
    • 84929839399 scopus 로고    scopus 로고
    • Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network
    • Cai J., Zheng P., Qaisar M., Luo T. Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network. Environ. Sci. Pollut. Res. 2014, 1-8.
    • (2014) Environ. Sci. Pollut. Res. , pp. 1-8
    • Cai, J.1    Zheng, P.2    Qaisar, M.3    Luo, T.4
  • 4
    • 84958218592 scopus 로고    scopus 로고
    • Nonlinear regression with neural networks: how to determine each input-variable's contribution in case of nonlinear and interactive effects
    • (under review)
    • Fischer A. Nonlinear regression with neural networks: how to determine each input-variable's contribution in case of nonlinear and interactive effects. IEEE Trans. Neural Netw. Learn. Syst. 2015, (under review).
    • (2015) IEEE Trans. Neural Netw. Learn. Syst.
    • Fischer, A.1
  • 6
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. AI Expert 1991, 6(4):46-51.
    • (1991) AI Expert , vol.6 , Issue.4 , pp. 46-51
    • Garson, G.D.1
  • 7
    • 0037442845 scopus 로고    scopus 로고
    • A comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M., Dimopoulus I., Lek S. A comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 2003, 160:249-264.
    • (2003) Ecol. Model. , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulus, I.2    Lek, S.3
  • 8
    • 84892533018 scopus 로고    scopus 로고
    • An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study
    • Guo Y.M., Liu Y.G., Zeng G.M., Hu X.J., Xu W.H., Liu Y.Q., Liu S.M., Sun H.S., Ye J., Huang H.J. An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study. Ecol. Eng. 2014, 64:18-26.
    • (2014) Ecol. Eng. , vol.64 , pp. 18-26
    • Guo, Y.M.1    Liu, Y.G.2    Zeng, G.M.3    Hu, X.J.4    Xu, W.H.5    Liu, Y.Q.6    Liu, S.M.7    Sun, H.S.8    Ye, J.9    Huang, H.J.10
  • 9
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 10
    • 84907890026 scopus 로고    scopus 로고
    • A comparison of methods for assessing the relative importance of input variables in artificial neural networks
    • Ibrahim O.M. A comparison of methods for assessing the relative importance of input variables in artificial neural networks. J. Appl. Sci. Res. 2013, 9(11):5692-5700.
    • (2013) J. Appl. Sci. Res. , vol.9 , Issue.11 , pp. 5692-5700
    • Ibrahim, O.M.1
  • 11
    • 34247525561 scopus 로고    scopus 로고
    • An approach for determining relative input parameter importance and significance in artificial neural networks
    • Kemp S.J., Zaradic P., Hansen F. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol. Model. 2007, 204:326-334.
    • (2007) Ecol. Model. , vol.204 , pp. 326-334
    • Kemp, S.J.1    Zaradic, P.2    Hansen, F.3
  • 13
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., Guégan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120(2):65-73.
    • (1999) Ecol. Model. , vol.120 , Issue.2 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 14
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy M.K., Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 2004, 178(3):389-397.
    • (2004) Ecol. Model. , vol.178 , Issue.3 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 15
    • 80053940588 scopus 로고    scopus 로고
    • Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus)
    • Olden J.D., Vander Zanden M.J., Johnson P.T. Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). Ecol. Appl. 2011, 21(7):2587-2599.
    • (2011) Ecol. Appl. , vol.21 , Issue.7 , pp. 2587-2599
    • Olden, J.D.1    Vander Zanden, M.J.2    Johnson, P.T.3
  • 16
    • 79954593174 scopus 로고    scopus 로고
    • Assessing the contribution of variables in feed forward neural network
    • Paliwal M., Kumar U.A. Assessing the contribution of variables in feed forward neural network. Appl. Soft Comput. 2011, 11:3690-3696.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3690-3696
    • Paliwal, M.1    Kumar, U.A.2
  • 17
    • 84873741252 scopus 로고    scopus 로고
    • The expertise reversal effect concerning instructional explanations
    • Rey G.D., Fischer A. The expertise reversal effect concerning instructional explanations. Instr. Sci. 2013, 41:407-429.
    • (2013) Instr. Sci. , vol.41 , pp. 407-429
    • Rey, G.D.1    Fischer, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.