-
1
-
-
0002343269
-
Top-down induction of logical decision trees
-
Madison, WI
-
Blockeel, H., DeRaedt, L. and Ramon, J. Top-down induction of logical decision trees. In Proceedings of 1998 International Conference of Machine Learning (ICML'98), Madison, WI, 1998.
-
(1998)
Proceedings of 1998 International Conference of Machine Learning (ICML'98)
-
-
Blockeel, H.1
DeRaedt, L.2
Ramon, J.3
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Blum A. and Mitchell, T.M. Combining labeled and unlabeled data with co-training. In Proceedings of COLT-98, 1998, 92-100.
-
(1998)
Proceedings of COLT-98
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.M.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. Bagging Predictors, Machine Learning, 24 (2), 1996, 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 1998, 121-168.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-168
-
-
Burges, C.J.C.1
-
5
-
-
9444271884
-
Guid to the financial data set
-
Siebes, A. and Berka, P., editors
-
Berka, P. Guid to the financial data set. In Siebes, A. and Berka, P., editors, The ECML/PKDD 2000 Discovery Challenge, 2000.
-
(2000)
The ECML/PKDD 2000 Discovery Challenge
-
-
Berka, P.1
-
6
-
-
40649129191
-
PKDD 2001 discovery challenge - Medical domain
-
Coursac, I., Duteil, N., and Lucas, N. PKDD 2001 Discovery Challenge - Medical Domain. The PKDD Discovery Challenge 2001, 3 (2), 2002.
-
The PKDD Discovery Challenge 2001
, vol.3
, Issue.2
, pp. 2002
-
-
Coursac, I.1
Duteil, N.2
Lucas, N.3
-
8
-
-
6344279447
-
Multi-relational data mining: An introduction
-
Dzeroski, S. Multi-relational Data Mining: An Introduction, ACM SIGKDD Explorations, 5 (1), 2003, 1-16.
-
(2003)
ACM SIGKDD Explorations
, vol.5
, Issue.1
, pp. 1-16
-
-
Dzeroski, S.1
-
9
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Bari, Italy
-
Freund, Y. and Schapire, R. Experiments with a New Boosting Algorithm, the Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, 1996, 148-156.
-
(1996)
The Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.2
-
11
-
-
27144479454
-
Learning from imbalanced data sets with Boosting and Data Generation: The DataBoost-IM approach
-
Guo, H. and Viktor, H.L, Learning from imbalanced data sets with Boosting and Data Generation: the DataBoost-IM approach, ACM SIGKDD Explorations, 6 (1), 2004, 30-39.
-
(2004)
ACM SIGKDD Explorations
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
12
-
-
16344373871
-
Learnig probabilistic models of relational structure
-
Williams College
-
Getoor, L., Friedman, N, Koller, D. and Taskar, B. Learnig probabilistic models of relational structure. Proceedings of the Eighteenth International Conference on Machine Learning (ICML), Williams College, 2001.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning (ICML)
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Taskar, B.4
-
13
-
-
84937420049
-
Transformation-based learning using multirelational aggregation
-
Rouveirol, C. and Sebag, M. editors, Springer
-
Krogel, M. -A. and Wrobel, S. Transformation-Based Learning using Multirelational Aggregation. In Rouveirol, C. and Sebag, M. editors, Proceedings of the Eleventh International Conference on Inductive Logic Programming (ILP), LNAI 2157, Springer, 2001, 142-155.
-
(2001)
Proceedings of the Eleventh International Conference on Inductive Logic Programming (ILP), LNAI
, vol.2157
, pp. 142-155
-
-
Krogel, M.-A.1
Wrobel, S.2
-
14
-
-
84943258577
-
Propositionalisation and aggregates
-
Deraedt, L. and Siebes, A. editors, Springer
-
Knobbe, A.J., Haas, M. de. And Siebes, A. Propositionalisation and Aggregates. In Deraedt, L. and Siebes, A. editors, Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), LNAI 2168, Springer, 2001, 277-288.
-
(2001)
Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), LNAI
, vol.2168
, pp. 277-288
-
-
Knobbe, A.J.1
De Haas, M.2
Siebes, A.3
-
17
-
-
22544476130
-
-
Ph. D. Dissertation, Department of Computer Science, University of Southern California
-
Muslea, I. Active Learning with Multiple Views, Ph.D. Dissertation, Department of Computer Science, University of Southern California, 2002.
-
(2002)
Active Learning with Multiple Views
-
-
Muslea, I.1
-
18
-
-
0002721544
-
Efficient induction of logic programs
-
Ohmsma, Tokyo, Japan
-
Muggleton, S. and Feng, C. Efficient induction of logic programs. In Proceedings of the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, 1990, 368-381.
-
(1990)
Proceedings of the 1st Conference on Algorithmic Learning Theory
, pp. 368-381
-
-
Muggleton, S.1
Feng, C.2
-
20
-
-
22944446870
-
Aggregation-based feature invention and relational concept classes
-
Washington, D.C.
-
Perlich, C. and Provost, F. Aggregation-based feature invention and relational concept classes, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C. 2003, 167-176.
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 167-176
-
-
Perlich, C.1
Provost, F.2
-
25
-
-
84949229045
-
An assessment of ILP-assisted models for toxicology and the PTE-3 experiment
-
Springer-Verlag
-
Srinivasan, A., King, R. and Bristol, D. An assessment of ILP-assisted models for toxicology and the PTE-3 experiment. In Proceedings of the Ninth International Workshop on Inductive Logic programming, LNAI 1634, Springer-Verlag, 1999, 291-302.
-
(1999)
Proceedings of the Ninth International Workshop on Inductive Logic Programming, LNAI
, vol.1634
, pp. 291-302
-
-
Srinivasan, A.1
King, R.2
Bristol, D.3
-
26
-
-
0032111421
-
Category learning from multimodality
-
Sa, V. de. and Ballard, D. Category learning from multimodality. Neural Computation, 10 (5), 1998, 1097-1117.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1097-1117
-
-
De Sa, V.1
Ballard, D.2
-
27
-
-
22944433186
-
First order random forests with complex aggregates
-
Camacho, R., King, R., and Srinivasan, A. (Eds.), Springer-Verlag
-
Vens, C., Assche, A.V., Blockeel, H., and Dzeroski, S. First order random forests with complex aggregates. Camacho, R., King, R., and Srinivasan, A. (Eds.), Proceedings of the Fourteenth International Conference on Inductive Logic Programming (ILP), LNAI 3194, Springer-Verlag, 2004, 323-340.
-
(2004)
Proceedings of the Fourteenth International Conference on Inductive Logic Programming (ILP), LNAI
, vol.3194
, pp. 323-340
-
-
Vens, C.1
Assche, A.V.2
Blockeel, H.3
Dzeroski, S.4
-
30
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. Stacked Generalization, Neural Network, 5, 1992, 241-259.
-
(1992)
Neural Network
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
31
-
-
2442458705
-
CrossMine: Efficient classification across multiple database relations
-
Boston, MA
-
Yin, X., Han, J., Yang, J., and Yu, P.S., CrossMine: Efficient Classification across Multiple Database Relations, in Proceedings of the 2004 International conference on Data Engineering (ICDE'04), Boston, MA, 2004.
-
(2004)
Proceedings of the 2004 International Conference on Data Engineering (ICDE'04)
-
-
Yin, X.1
Han, J.2
Yang, J.3
Yu, P.S.4
|