메뉴 건너뛰기




Volumn 1255, Issue , 1997, Pages 291-310

A vector version of the bms algorithm for implementing fast erasure-and-error decoding of one-point ag codes

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CODES (SYMBOLS); DECODING; ERRORS;

EID: 84957804442     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-63163-1_23     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 1
    • 33747274267 scopus 로고
    • Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
    • S. Sakata, “Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array”, J. Symbolic Computation, vol.5, pp.321-337, 1988.
    • (1988) J. Symbolic Computation , vol.5 , pp. 321-337
    • Sakata, S.1
  • 2
    • 0025383036 scopus 로고
    • Extension of the Berlekamp-Massey algorithm to N dimensions
    • S. Sakata, “Extension of the Berlekamp-Massey algorithm to N dimensions”, Information and Computation, vol.84, pp.207-239, 1990.
    • (1990) Information and Computation , vol.84 , pp. 207-239
    • Sakata, S.1
  • 5
    • 0342398184 scopus 로고
    • ND shift register synthesis on convex cones and cylinders and fast decoding of general one-point AG codes
    • presented at the 1994 IEEE Workshop on Information Theory, Moscow, Russia, July 1994
    • S. Sakata, “nD shift register synthesis on convex cones and cylinders and fast decoding of general one-point AG codes”, presented at the 1994 IEEE Workshop on Information Theory, Moscow, Russia, July 1994; Bulletin of the University of Electro-Communications, vol. 8, pp. 187-203, 1995.
    • (1995) Bulletin of the University of Electro-Communications , vol.8 , pp. 187-203
    • Sakata, S.1
  • 6
    • 0001072540 scopus 로고
    • Generalized Berlekamp-Massey decoding of algebraic geometric codes up to half the Feng-Rao bound
    • S. Sakata, H. Elbrønd Jensen, and T. Høholdt, “Generalized Berlekamp-Massey decoding of algebraic geometric codes up to half the Feng-Rao bound”, IEEE Transactions on Information Theory, vol. 41, Part I, pp. 1762-1768, 1995.
    • (1995) IEEE Transactions on Information Theory , vol.41 , pp. 1762-1768
    • Sakata, S.1    Elbrønd Jensen, H.2    Høholdt, T.3
  • 7
    • 0027311434 scopus 로고
    • Decoding algebraic-geometric codes up to the designed minimum distance
    • G.L. Feng and T.R.N. Rao, “Decoding algebraic-geometric codes up to the designed minimum distance”, IEEE Transactions on Information Theory, vol. 39, pp. 37-45, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 37-45
    • Feng, G.L.1    Rao, T.R.N.2
  • 10
    • 33747178042 scopus 로고
    • Erasure-and-error decoding of algebraic-geometric codes
    • presented at the 1993, Shizuoka, Japan, June
    • G.L. Feng and T.R.N. Rao, “Erasure-and-error decoding of algebraic-geometric codes”, presented at the 1993 IEEE Information Theory Workshop, Shizuoka, Japan, June 1993.
    • (1993) IEEE Information Theory Workshop
    • Feng, G.L.1    Rao, T.R.N.2
  • 11
    • 84892318907 scopus 로고
    • Finding a minimal polynomial vector of a vector of nD arrays
    • New Orleans, USA: Lecture Notes in Computer Science, 539, Springer Verlag
    • S. Sakata, “Finding a minimal polynomial vector of a vector of nD arrays”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings of AAECC-9, New Orleans, USA: Lecture Notes in Computer Science, 539, Springer Verlag, pp. 414-425, 1991.
    • (1991) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings of AAECC-9 , pp. 414-425
    • Sakata, S.1
  • 13
    • 0029306704 scopus 로고
    • Error-locator ideals for algebraic-geometric codes
    • D.A. Leonard, “Error-locator ideals for algebraic-geometric codes”, IEEE Transactions on Information Theory, vol. 41, Part I, pp. 819-824, 1995.
    • (1995) IEEE Transactions on Information Theory , vol.41 , pp. 819-824
    • Leonard, D.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.