-
2
-
-
84866613060
-
Mathematical modeling of proton exchange membrane fuel cell with integrated humidifier for mobile applications
-
Dearborn, Michigan, USA, 18-20 Iunie
-
E. Breaz, F. Gao, B. Blunier, R. Tirnovan, Mathematical modeling of proton exchange membrane fuel cell with integrated humidifier for mobile applications, IEEE Transportation Electrification Conference and Expo (ITEC '12), Dearborn, Michigan, USA, 18-20 Iunie, 2012, ISBN 978-1-4673-1406-0, pp. 1-6.
-
(2012)
IEEE Transportation Electrification Conference and Expo (ITEC '12)
, pp. 1-6
-
-
Breaz, E.1
Gao, F.2
Blunier, B.3
Tirnovan, R.4
-
3
-
-
34250342625
-
Applications of proton exchange membrane fuel cell systems
-
Wee J-H. Applications of proton exchange membrane fuel cell systems. Renew Sustain Energy 2007; 11 (8): 1720-1738
-
(2007)
Renew Sustain Energy
, vol.11
, Issue.8
, pp. 1720-1738
-
-
Wee, J.-H.1
-
4
-
-
84949928149
-
A short review of aging mechanism modeling of proton exchange membrane fuel cell in transportation applications
-
E. Breaz, F. Gao, A. Miraoui, R. Tirnovan, A Short Review of Aging Mechanism Modeling of Proton Exchange Membrane Fuel Cell in Transportation Applications, Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, Nov. 2014.
-
(2014)
Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, Nov
-
-
Breaz, E.1
Gao, F.2
Miraoui, A.3
Tirnovan, R.4
-
5
-
-
34250342625
-
Applications of proton exchange membrane fuel cell systems
-
Jung-Ho Wee, Applications of proton exchange membrane fuel cell systems, Renewable and Sustainable Energy Reviews 11 (2007) 1720-1738
-
(2007)
Renewable and Sustainable Energy Reviews
, vol.11
, pp. 1720-1738
-
-
Wee, J.1
-
6
-
-
84903307762
-
Proton exchange membrane fuel cell degradation prediction based on Adaptive neuro-fuzzy inference systems
-
R. E. Silva, R. Gouriveau, S. Jemei, D. Hissel, L. Boulon, K. Agbossou, N. Yousfi Steiner, Proton exchange membrane fuel cell degradation prediction based on Adaptive Neuro-Fuzzy Inference Systems, International Journal of Hydrogen Energy 39 (2014) 11128-11144
-
(2014)
International Journal of Hydrogen Energy
, vol.39
, pp. 11128-11144
-
-
Silva, R.E.1
Gouriveau, R.2
Jemei, S.3
Hissel, D.4
Boulon, L.5
Agbossou, K.6
Yousfi Steiner, N.7
-
7
-
-
84920548006
-
An unscented Kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell
-
Xian Zhang, Pierluigi Pisu, An unscented Kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell, Annual Conference of the Prognostics and Health Management Society 2012
-
(2012)
Annual Conference of the Prognostics and Health Management Society
-
-
Zhang, X.1
Pisu, P.2
-
8
-
-
84890393879
-
Prognostics of PEM fuel cell in a particle filtering framework
-
Marine Jouin, Rafael Gouriveau, Daniel Hissel, Marie-Cécile Péra, Noureddine Zerhouni, Prognostics of PEM fuel cell in a particle filtering framework, International Journal of Hydrogen Energy 39 (2014) 481-494
-
(2014)
International Journal of Hydrogen Energy
, vol.39
, pp. 481-494
-
-
Jouin, M.1
Gouriveau, R.2
Hissel, D.3
Péra, M.4
Zerhouni, N.5
-
9
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping
-
Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Learning Research, 1 (2001) 211-244
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
-
10
-
-
28044467657
-
Bayesian regression and classification
-
J. A. K. Suykens et al. (Editors), IOS Press
-
Christopher M. Bishop, Michael E. Tipping, Bayesian Regression and Classification, Advances in Learning Theory: Methods, Models and Applications, J. A. K. Suykens et al. (Editors), IOS Press
-
Advances in Learning Theory: Methods, Models and Applications
-
-
Bishop, C.M.1
Tipping, M.E.2
-
13
-
-
67650712207
-
Comparison of prognostic algorithms for estimating remaining useful life of batteries
-
Bhaskar Saha, Kai Goebel, Jon Christophersen, Comparison of prognostic algorithms for estimating remaining useful life of batteries, Transactions of the Institute of Measurement and Control, vol. 31, pp. 293-308, 2009.
-
(2009)
Transactions of the Institute of Measurement and Control
, vol.31
, pp. 293-308
-
-
Saha, B.1
Goebel, K.2
Christophersen, J.3
-
15
-
-
84861187447
-
Fatigue crack growth estimation by relevance vector machine
-
Enrico Zio, Francesco Di Maio, Fatigue crack growth estimation by relevance vector machine, Expert Systems with Applications 39 (2012) 10681-10692
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 10681-10692
-
-
Zio, E.1
Di Maio, F.2
-
16
-
-
84903145771
-
Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine
-
July
-
Hong Li, Donghui Pan, C. L. Philip Chen, Intelligent Prognostics for Battery Health Monitoring Using the Mean Entropy and Relevance Vector Machine, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, No. 7, July 2014
-
(2014)
IEEE Transactions on Systems, Man, and Cybernetics: Systems
, vol.44
, Issue.7
-
-
Li, H.1
Pan, D.2
Philip Chen, C.L.3
-
17
-
-
84882260388
-
An optimized relevance vector machine with incremental learning strategy for lithium-ion battery remaining useful life estimation
-
IEEE International
-
Jianbao Zhou, Datong Liu, Yu Peng, Xiyuan Peng, An Optimized Relevance Vector Machine with Incremental Learning Strategy for Lithium-ion Battery Remaining Useful Life Estimation, Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International
-
(2013)
Instrumentation and Measurement Technology Conference (I2MTC)
-
-
Zhou, J.1
Liu, D.2
Peng, Y.3
Peng, X.4
-
18
-
-
84876568884
-
Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
-
Dong Wang, Qiang Miao, Michael Pecht, Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model, Journal of Power Sources 239 (2013) 253-264
-
(2013)
Journal of Power Sources
, vol.239
, pp. 253-264
-
-
Wang, D.1
Miao, Q.2
Pecht, M.3
|