메뉴 건너뛰기




Volumn 2015-May, Issue , 2015, Pages 475-489

COMMIT: A scalable approach to mining communication motifs from dynamic networks

Author keywords

Communication motifs; Graph mining; Interaction networks

Indexed keywords

SOCIAL NETWORKING (ONLINE);

EID: 84957581340     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2723372.2737791     Document Type: Conference Paper
Times cited : (77)

References (38)
  • 1
    • 84957596007 scopus 로고    scopus 로고
    • ENRON, http://www.cs.cmu.edu/~enron/.
    • ENRON1
  • 2
    • 84957552001 scopus 로고    scopus 로고
    • http://en. wikipedia.org/wiki/f1-score.
  • 3
    • 84957563266 scopus 로고    scopus 로고
    • SNAP, http://snap. stanford.edu/.
    • SNAP1
  • 4
    • 12344323594 scopus 로고    scopus 로고
    • Conserved network motifs allow protein-protein interaction prediction
    • I. Albert and R. Albert. Conserved network motifs allow protein-protein interaction prediction. Bioinformatics, 20(18):3346-3352, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3346-3352
    • Albert, I.1    Albert, R.2
  • 6
    • 34748903449 scopus 로고    scopus 로고
    • Pattern mining in frequent dynamic subgraphs
    • K. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern mining in frequent dynamic subgraphs. In ICDM, pages 818-822, 2006.
    • (2006) ICDM , pp. 818-822
    • Borgwardt, K.1    Kriegel, H.-P.2    Wackersreuther, P.3
  • 7
    • 44649158325 scopus 로고    scopus 로고
    • What is frequent in a single graph?
    • Springer-Verlag
    • B. Bringmann and S. Nijssen. What is frequent in a single graph? In PAKDD, pages 858-863. Springer-Verlag, 2008.
    • (2008) PAKDD , pp. 858-863
    • Bringmann, B.1    Nijssen, S.2
  • 9
    • 55749116150 scopus 로고    scopus 로고
    • Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
    • G. Chechik, E. Oh, O. Rando, J. Weissman, A. Regev, and D. Koller. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nature biotechnology, 26(11):1251-1259, 2008.
    • (2008) Nature Biotechnology , vol.26 , Issue.11 , pp. 1251-1259
    • Chechik, G.1    Oh, E.2    Rando, O.3    Weissman, J.4    Regev, A.5    Koller, D.6
  • 10
    • 44349107818 scopus 로고    scopus 로고
    • A review on models and algorithms for motif discovery in protein-protein interaction networks
    • G. Ciriello and C. Guerra. A review on models and algorithms for motif discovery in protein-protein interaction networks. Briefings in functional genomics & proteomics, 7(2):147-156, 2008.
    • (2008) Briefings in Functional Genomics & Proteomics , vol.7 , Issue.2 , pp. 147-156
    • Ciriello, G.1    Guerra, C.2
  • 11
    • 67649646374 scopus 로고    scopus 로고
    • Efficient mining of closed repetitive gapped subsequences from a sequence database
    • B. Ding, D. Lo, J. Han, and S.-C. Khoo. Efficient mining of closed repetitive gapped subsequences from a sequence database. In ICDE, pages 1024-1035, 2009.
    • (2009) ICDE , pp. 1024-1035
    • Ding, B.1    Lo, D.2    Han, J.3    Khoo, S.-C.4
  • 12
    • 84896858490 scopus 로고    scopus 로고
    • Grami: Frequent subgraph and pattern mining in a single large graph
    • M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Frequent subgraph and pattern mining in a single large graph. PVLDB, 7(7), 2014.
    • (2014) PVLDB , vol.7 , Issue.7
    • Elseidy, M.1    Abdelhamid, E.2    Skiadopoulos, S.3    Kalnis, P.4
  • 13
    • 84864852403 scopus 로고    scopus 로고
    • How people interact in evolving online affiliation networks
    • Aug. 2012
    • L. K. Gallos, D. Rybski, F. Liljeros, S. Havlin, and H. A. Makse. How people interact in evolving online affiliation networks. Phys. Rev. X, 2:031014, Aug. 2012.
    • Phys. Rev. X , vol.2 , pp. 031014
    • Gallos, L.K.1    Rybski, D.2    Liljeros, F.3    Havlin, S.4    Makse, H.A.5
  • 14
    • 84883515330 scopus 로고    scopus 로고
    • Temporal motifs reveal the dynamics of editor interactions in wikipedia
    • D. Jurgens and T.-C. Lu. Temporal motifs reveal the dynamics of editor interactions in wikipedia. In ICWSM, 2012.
    • (2012) ICWSM
    • Jurgens, D.1    Lu, T.-C.2
  • 16
    • 4444268694 scopus 로고    scopus 로고
    • Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs
    • N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746-1758, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1746-1758
    • Kashtan, N.1    Itzkovitz, S.2    Milo, R.3    Alon, U.4
  • 19
    • 84887282279 scopus 로고    scopus 로고
    • Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
    • L. Kovanen, K. Kaski, J. Kertész, and J. Saramäki. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proceedings of the National Academy of Sciences, 110(45):18070-18075, 2013.
    • (2013) Proceedings of the National Academy of Sciences , vol.110 , Issue.45 , pp. 18070-18075
    • Kovanen, L.1    Kaski, K.2    Kertész, J.3    Saramäki, J.4
  • 20
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 21
    • 27944453480 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data mining and knowledge discovery, 11(3):243-271, 2005.
    • (2005) Data Mining and Knowledge Discovery , vol.11 , Issue.3 , pp. 243-271
    • Kuramochi, M.1    Karypis, G.2
  • 24
  • 26
    • 0035016443 scopus 로고    scopus 로고
    • Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth
    • J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE, pages 0215-0215, 2001.
    • (2001) ICDE , pp. 0215
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Pinto, H.4    Chen, Q.5    Dayal, U.6    Hsu, M.-C.7
  • 27
    • 80052886632 scopus 로고    scopus 로고
    • Probabilistic substructure mining from small-molecule screens
    • S. Ranu, B. T. Calhoun, A. K. Singh, and S. J. Swamidass. Probabilistic substructure mining from small-molecule screens. Molecular Informatics, 30(9):809-815, 2011.
    • (2011) Molecular Informatics , vol.30 , Issue.9 , pp. 809-815
    • Ranu, S.1    Calhoun, B.T.2    Singh, A.K.3    Swamidass, S.J.4
  • 28
    • 84904369287 scopus 로고    scopus 로고
    • Mining discriminative subgraphs from global-state networks
    • S. Ranu, M. Hoang, and A. Singh. Mining discriminative subgraphs from global-state networks. In SIGKDD, pages 509-517, 2013.
    • (2013) SIGKDD , pp. 509-517
    • Ranu, S.1    Hoang, M.2    Singh, A.3
  • 29
    • 67649644367 scopus 로고    scopus 로고
    • Graphsig: A scalable approach to mining significant subgraphs in large graph databases
    • S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining significant subgraphs in large graph databases. In ICDE, pages 844-855, 2009.
    • (2009) ICDE , pp. 844-855
    • Ranu, S.1    Singh, A.K.2
  • 30
    • 72949103757 scopus 로고    scopus 로고
    • Mining statistically significant molecular substructures for efficient molecular classification
    • S. Ranu and A. K. Singh. Mining statistically significant molecular substructures for efficient molecular classification. Journal of chemical information and modeling, 49(11):2537-2550, 2009.
    • (2009) Journal of Chemical Information and Modeling , vol.49 , Issue.11 , pp. 2537-2550
    • Ranu, S.1    Singh, A.K.2
  • 31
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of escherichia coli. Nature genetics, 31(1):64-68, 2002.
    • (2002) Nature Genetics , vol.31 , Issue.1 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 32
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman. The proof and measurement of association between two things. The American journal of psychology, 15(1):72-101, 1904.
    • (1904) The American Journal of Psychology , vol.15 , Issue.1 , pp. 72-101
    • Spearman, C.1
  • 35
    • 78149333073 scopus 로고    scopus 로고
    • Gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2
  • 36
    • 77954692432 scopus 로고    scopus 로고
    • Comparing stars: On approximating graph edit distance
    • Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On approximating graph edit distance. PVLDB, 2(1), 2009.
    • (2009) PVLDB , vol.2 , Issue.1
    • Zeng, Z.1    Tung, A.K.H.2    Wang, J.3    Feng, J.4    Zhou, L.5
  • 37
    • 78651292681 scopus 로고    scopus 로고
    • Communication motifs: A tool to characterize social communications
    • Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W.-C. Lee. Communication motifs: a tool to characterize social communications. In CIKM, pages 1645-1648, 2010.
    • (2010) CIKM , pp. 1645-1648
    • Zhao, Q.1    Tian, Y.2    He, Q.3    Oliver, N.4    Jin, R.5    Lee, W.-C.6
  • 38
    • 38049184755 scopus 로고    scopus 로고
    • Gprune: A constraint pushing framework for graph pattern mining
    • F. Zhu, X. Yan, J. Han, and P. S. Yu. gprune: A constraint pushing framework for graph pattern mining. In PAKDD, pages 388-400, 2007.
    • (2007) PAKDD , pp. 388-400
    • Zhu, F.1    Yan, X.2    Han, J.3    Yu, P.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.