메뉴 건너뛰기




Volumn 2420, Issue , 2002, Pages 353-364

An explicit lower bound of 5n − o(n) for boolean circuits

Author keywords

[No Author keywords available]

Indexed keywords

LOGIC CIRCUITS; TIMING CIRCUITS;

EID: 84957018834     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45687-2_29     Document Type: Conference Paper
Times cited : (64)

References (8)
  • 2
    • 0021370261 scopus 로고
    • A Boolean function requiring 3n network size
    • N. Blum. A Boolean function requiring 3n network size. Theoret. Comput. Sci., 28, pp. 337-345, 1984.
    • (1984) Theoret. Comput. Sci. , vol.28 , pp. 337-345
    • Blum, N.1
  • 3
    • 0034830275 scopus 로고    scopus 로고
    • Explicit lower bound of 4.5n − o(n) for Boolean circuits
    • O. Lachish and R. Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits. Proc. STOC’01, pp. 399-408, 2001.
    • (2001) Proc. STOC’01 , pp. 399-408
    • Lachish, O.1    Raz, R.2
  • 4
    • 0040666550 scopus 로고
    • A 2.5n-lower bound on the combinational complexity of boolean functions
    • W. Paul. A 2.5n-lower bound on the combinational complexity of boolean functions. SIAM J. Comput. 6, pp. 427-443, 1977.
    • (1977) SIAM J. Comput , vol.6 , pp. 427-443
    • Paul, W.1
  • 5
    • 0015982739 scopus 로고
    • Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen
    • C. Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, pp. 155-171, 1974.
    • (1974) Computing , vol.13 , pp. 155-171
    • Schnorr, C.1
  • 6
    • 0346210006 scopus 로고
    • On the combinational complexity of certain symmetric Boolean functions
    • L. Stockmeyer. On the combinational complexity of certain symmetric Boolean functions. Math. System Theory 10, pp. 323-336, 1977.
    • (1977) Math. System Theory , vol.10 , pp. 323-336
    • Stockmeyer, L.1
  • 8
    • 0026170638 scopus 로고
    • A 4n lower bound on the combinatorial complexity of certain symmetric Boolean functions over the basis of unate dyadic Boolean functions
    • U. Zwick. A 4n lower bound on the combinatorial complexity of certain symmetric Boolean functions over the basis of unate dyadic Boolean functions. SIAM J. Comput. 20, pp. 499-505, 1991.
    • (1991) SIAM J. Comput , vol.20 , pp. 499-505
    • Zwick, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.