-
1
-
-
84880151349
-
Nanomaterials for energy conversion and storage
-
Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev.2013, 42, 3127–3171.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 3127-3171
-
-
Zhang, Q.F.1
Uchaker, E.2
Candelaria, S.L.3
Cao, G.Z.4
-
2
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed.2008, 47, 2930–2946.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.-M.3
-
3
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev.2013, 113, 5364–5457.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Rao, G.V.S.2
Chowdari, B.V.R.3
-
4
-
-
84859560154
-
Metal oxide hollow nanostructures for lithium-ion batteries
-
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater.2012, 24, 1903–1911.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1903-1911
-
-
Wang, Z.Y.1
Zhou, L.2
Lou, X.W.3
-
5
-
-
0032628838
-
Carbon materials for lithium-ion rechargeable batteries
-
Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon1999, 37, 165–180.
-
(1999)
Carbon
, vol.37
, pp. 165-180
-
-
Flandrois, S.1
Simon, B.2
-
6
-
-
80053325124
-
Multi-scale study of thermal stability of lithiated graphite
-
Chen, Z. H.; Qin, Y.; Ren, Y.; Lu, W. Q.; Orendorff, C.; Roth, E. P.; Amine, K. Multi-scale study of thermal stability of lithiated graphite. Energy Environ. Sci.2011, 4, 4023–4030.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4023-4030
-
-
Chen, Z.H.1
Qin, Y.2
Ren, Y.3
Lu, W.Q.4
Orendorff, C.5
Roth, E.P.6
Amine, K.7
-
7
-
-
84867361554
-
Titaniumbased anode materials for safe lithium-ion batteries
-
Chen, Z. H.; Belharouak, I.; Sun, Y.-K.; Amine, K. Titaniumbased anode materials for safe lithium-ion batteries. Adv. Funct. Mater.2013, 23, 959–969.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 959-969
-
-
Chen, Z.H.1
Belharouak, I.2
Sun, Y.-K.3
Amine, K.4
-
8
-
-
84860385499
-
Ti-based compounds as anode materials for Li-ion batteries
-
Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci.2012, 5, 6652–6667.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6652-6667
-
-
Zhu, G.-N.1
Wang, Y.-G.2
Xia, Y.-Y.3
-
9
-
-
66349130556
-
Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
-
Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources2009, 192, 588–598.
-
(2009)
J. Power Sources
, vol.192
, pp. 588-598
-
-
Yang, Z.G.1
Choi, D.2
Kerisit, S.3
Rosso, K.M.4
Wang, D.H.5
Zhang, J.6
Graff, G.7
Liu, J.8
-
10
-
-
84897100922
-
-
2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci. Rep. 2014, 4, 4479
-
2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci. Rep.2014, 4, 4479.
-
-
-
-
11
-
-
84925212665
-
2-carbon nanocomposites with hierarchical pores for lithium ion batteries
-
2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J. Mater. Chem. A, 2015, 3, 6862–6872.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6862-6872
-
-
Song, L.H.1
Li, L.2
Gao, X.3
Zhao, J.X.4
Lu, T.5
Liu, Z.6
-
13
-
-
84874867057
-
2-C nanocomposite as an anode material for long-term performance lithium-ion batteries
-
2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A, 2013, 1, 4293–4299.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4293-4299
-
-
Zeng, L.X.1
Zheng, C.2
Xia, L.C.3
Wang, Y.X.4
Wei, M.D.5
-
15
-
-
30444453002
-
2 and carbon nanotubes as a high-rate Li-intercalation electrode material
-
2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater.2006, 18, 69–73.
-
(2006)
Adv. Mater.
, vol.18
, pp. 69-73
-
-
Moriguchi, I.1
Hidaka, R.2
Yamada, H.3
Kudo, T.4
Murakami, H.5
Nakashima, N.6
-
16
-
-
77949373773
-
Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem
-
Cao, F.-F.; Guo, Y.-G.; Zheng, S.-F.; Wu, X.-L.; Jiang, L.-Y.; Bi, R.-R.; Wan, L.-J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater.2010, 22, 1908–1914.
-
(2010)
Chem. Mater.
, vol.22
, pp. 1908-1914
-
-
Cao, F.-F.1
Guo, Y.-G.2
Zheng, S.-F.3
Wu, X.-L.4
Jiang, L.-Y.5
Bi, R.-R.6
Wan, L.-J.7
Maier, J.8
-
17
-
-
84890542797
-
2 nanoparticles on graphene for high-performance lithium ion batteries
-
2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc.2013, 135, 18300–18303.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 18300-18303
-
-
Li, W.1
Wang, F.2
Feng, S.S.3
Wang, J.X.4
Sun, Z.K.5
Li, B.6
Li, Y.H.7
Yang, J.P.8
Elzatahry, A.A.9
Xia, Y.Y.10
-
18
-
-
79957612523
-
2 nanospheres/graphene composites by templatefree self-assembly
-
2 nanospheres/graphene composites by templatefree self-assembly. Adv. Funct. Mater.2011, 21, 1717–1722.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 1717-1722
-
-
Li, N.1
Liu, G.2
Zhen, C.3
Li, F.4
Zhang, L.L.5
Cheng, H.-M.6
-
19
-
-
80051695209
-
Sandwich-like, graphenebased titania nanosheets with high surface area for fast lithium storage
-
Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphenebased titania nanosheets with high surface area for fast lithium storage. Adv. Mater.2011, 23, 3575–3579.
-
(2011)
Adv. Mater.
, vol.23
, pp. 3575-3579
-
-
Yang, S.B.1
Feng, X.L.2
Müllen, K.3
-
20
-
-
67049108048
-
2-graphene hybrid nanostructures for enhanced Li-ion insertion
-
2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano2009, 3, 907–914.
-
(2009)
ACS Nano
, vol.3
, pp. 907-914
-
-
Wang, D.H.1
Choi, D.2
Li, J.3
Yang, Z.G.4
Nie, Z.M.5
Kou, R.6
Hu, D.H.7
Wang, C.M.8
Saraf, L.V.9
Zhang, J.G.10
-
21
-
-
79951513799
-
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
-
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science2011, 331, 746–750.
-
(2011)
Science
, vol.331
, pp. 746-750
-
-
Chen, X.B.1
Liu, L.2
Yu, P.Y.3
Mao, S.S.4
-
23
-
-
84901650312
-
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure
-
Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano2014, 8, 5249–5256.
-
(2014)
ACS Nano
, vol.8
, pp. 5249-5256
-
-
Liang, Z.1
Zheng, G.Y.2
Li, W.Y.3
Seh, Z.W.4
Yao, H.B.5
Yan, K.6
Kong, D.S.7
Cui, Y.8
-
24
-
-
84897003773
-
2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode
-
2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano2014, 8, 2977–2985.
-
(2014)
ACS Nano
, vol.8
, pp. 2977-2985
-
-
Jeong, G.1
Kim, J.-G.2
Park, M.-S.3
Seo, M.4
Hwang, S.M.5
Kim, Y.-U.6
Kim, Y.-J.7
Kim, J.H.8
Dou, S.X.9
-
25
-
-
84901468944
-
2- reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries
-
2- reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. A, 2014, 2, 9150–9155.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9150-9155
-
-
Wang, J.1
Shen, L.F.2
Nie, P.3
Xu, G.Y.4
Ding, B.5
Fang, S.6
Dou, H.7
Zhang, X.G.8
-
26
-
-
84882389215
-
Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries
-
Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci.2013, 6, 2609–2614.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2609-2614
-
-
Myung, S.-T.1
Kikuchi, M.2
Yoon, C.S.3
Yashiro, H.4
Kim, S.-J.5
Sun, Y.-K.6
Scrosati, B.7
-
27
-
-
84879849034
-
2 microspheres for high rate capability lithium ion batteries
-
2 microspheres for high rate capability lithium ion batteries. RSC Adv.2013, 3, 11507–11510.
-
(2013)
RSC Adv.
, vol.3
, pp. 11507-11510
-
-
Li, G.C.1
Zhang, Z.H.2
Peng, H.R.3
Chen, K.Z.4
-
28
-
-
84887259698
-
2 nanoparticles
-
2 nanoparticles. J. Mater. Chem. A, 2013, 1, 14507–14513.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 14507-14513
-
-
Yan, Y.1
Hao, B.2
Wang, D.3
Chen, G.4
Markweg, E.5
Albrecht, A.6
Schaaf, P.7
-
29
-
-
84885370446
-
Hydrogenated surface disorder enhances lithium ion battery performance
-
Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy2013, 2, 826–835.
-
(2013)
Nano Energy
, vol.2
, pp. 826-835
-
-
Xia, T.1
Zhang, W.2
Li, W.J.3
Oyler, N.A.4
Liu, G.5
Chen, X.B.6
-
32
-
-
84860875015
-
2 nanoparticles
-
2 nanoparticles. J. Am. Chem. Soc.2012, 134, 7600–7603.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7600-7603
-
-
Naldoni, A.1
Allieta, M.2
Santangelo, S.3
Marelli, M.4
Fabbri, F.5
Cappelli, S.6
Bianchi, C.L.7
Psaro, R.D.8
Santo, V.9
-
33
-
-
84856853748
-
2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries
-
2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater.2012, 24, 543–551.
-
(2012)
Chem. Mater.
, vol.24
, pp. 543-551
-
-
Shin, J.-Y.1
Joo, J.H.2
Samuelis, D.3
Maier, J.4
-
34
-
-
84929324238
-
2 hollow microspheres assembled by nanocrystals and their superior cycling performance as anode materials for lithium-ion batteries
-
2 hollow microspheres assembled by nanocrystals and their superior cycling performance as anode materials for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 10829–10836.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 10829-10836
-
-
Tian, Q.H.1
Tian, Y.2
Zhang, Z.X.3
Qiao, C.S.4
Yang, L.5
Hirano, S.-I.6
-
35
-
-
84954342224
-
2 microboxes with controlled internal porosity for high-performance lithium storage
-
2 microboxes with controlled internal porosity for high-performance lithium storage. Angew. Chem., Int. Ed.2015, 54, 14331–14335.
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 14331-14335
-
-
Gao, X.H.1
Li, G.R.2
Xu, Y.Y.3
Hong, Z.L.4
Liang, C.D.5
Lin, Z.6
-
36
-
-
85027958139
-
2-based nanotubular materials for ultrafast rechargeable lithium ion batteries
-
2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater.2014, 26, 6111–6118.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6111-6118
-
-
Tang, Y.X.1
Zhang, Y.Y.2
Deng, J.Y.3
Wei, J.Q.L.4
Tam, H.5
Chandran, B.K.6
Dong, Z.L.7
Chen, Z.8
Chen, X.D.9
-
37
-
-
84915814993
-
2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties
-
2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed.2014, 53, 12590–12593.
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 12590-12593
-
-
Zhang, G.Q.1
Wu, H.B.2
Song, T.3
Paik, U.4
Lou, X.W.5
-
38
-
-
84876232251
-
2 hollow spheres
-
2 hollow spheres. J. Power Sources2013, 238, 197–202.
-
(2013)
J. Power Sources
, vol.238
, pp. 197-202
-
-
Xiao, L.1
Cao, M.L.2
Mei, D.D.3
Guo, Y.L.4
Yao, L.F.5
Qu, D.Y.6
Deng, B.H.7
-
39
-
-
84864591856
-
2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties
-
2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater.2012, 24, 4124–4129.
-
(2012)
Adv. Mater.
, vol.24
, pp. 4124-4129
-
-
Wang, Z.Y.1
Lou, X.W.2
-
40
-
-
84867300203
-
2 hollow particles for photocatalysis and lithium-ion battery applications
-
2 hollow particles for photocatalysis and lithium-ion battery applications. J. Mater. Chem.2012, 22, 22135–22141.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 22135-22141
-
-
Ming, J.1
Wu, Y.Q.2
Nagarajan, S.3
Lee, D.-J.4
Sun, Y.-K.5
Zhao, F.Y.6
-
42
-
-
84862907515
-
2 hollow structures and their application in lithium batteries
-
2 hollow structures and their application in lithium batteries. J. Mater. Chem.2012, 22, 1969–1976.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 1969-1976
-
-
Wang, Y.1
Su, X.W.2
Lu, S.3
-
43
-
-
85027942077
-
2 submicroboxes with superior lithium storage properties
-
2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed.2015, 54, 4001–4004.
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 4001-4004
-
-
Yu, X.-Y.1
Wu, H.B.2
Yu, L.3
Ma, F.-X.4
Lou, X.W.5
-
45
-
-
79959255330
-
Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres
-
Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem., Int. Ed.2011, 50, 5947–5951.
-
(2011)
Angew. Chem., Int. Ed.
, vol.50
, pp. 5947-5951
-
-
Liu, J.1
Qiao, S.Z.2
Liu, H.3
Chen, J.4
Orpe, A.5
Zhao, D.Y.6
Lu, G.Q.7
-
46
-
-
84864274961
-
2 shells for multifunctional core–shell structures
-
2 shells for multifunctional core–shell structures. J. Am. Chem. Soc.2012, 134, 11864–11867.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 11864-11867
-
-
Li, W.1
Yang, J.P.2
Wu, Z.X.3
Wang, J.X.4
Li, B.5
Feng, S.S.6
Deng, Y.H.7
Zhang, F.8
Zhao, D.Y.9
-
47
-
-
84924589234
-
2 nanospindles for highly selective enrichment of phosphopeptides
-
2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz.2014, 1, 439–445.
-
(2014)
Mater. Horiz.
, vol.1
, pp. 439-445
-
-
Li, W.1
Liu, M.B.2
Feng, S.S.3
Li, X.M.4
Wang, J.X.5
Shen, D.K.6
Li, Y.H.7
Sun, Z.K.8
Elzatahry, A.A.9
Lu, H.J.10
-
48
-
-
84925487159
-
Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis
-
Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res.2015, 8, 238–245.
-
(2015)
Nano Res.
, vol.8
, pp. 238-245
-
-
Wang, C.1
Chen, J.C.2
Zhou, X.R.3
Li, W.4
Liu, Y.5
Yue, Q.6
Xue, Z.T.7
Li, Y.H.8
Elzatahry, A.A.9
Deng, Y.H.10
-
49
-
-
84855332139
-
Mesoporous anatase titania hollow nanostructures though silica-protected calcination
-
Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater.2012, 22, 166–174.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 166-174
-
-
Joo, J.B.1
Zhang, Q.2
Lee, I.3
Dahl, M.4
Zaera, F.5
Yin, Y.D.6
-
50
-
-
83755182216
-
Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework
-
Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z.-S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater.2011, 1, 241–248.
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 241-248
-
-
Zhang, J.Y.1
Deng, Y.H.2
Gu, D.3
Wang, S.T.4
She, L.5
Che, R.C.6
Wang, Z.-S.7
Tu, B.8
Xie, S.H.9
Zhao, D.Y.10
-
51
-
-
39749102776
-
Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores
-
Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater.2008, 7, 222–228.
-
(2008)
Nat. Mater.
, vol.7
, pp. 222-228
-
-
Lee, J.1
Orilall, M.C.2
Warren, S.C.3
Kamperman, M.4
DiSalvo, F.J.5
Wiesner, U.6
-
52
-
-
84919667297
-
2 hollow shells through resin-protected calcination for enhanced photocatalytic activity
-
2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci.2015, 8, 286–296.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 286-296
-
-
Liu, H.Y.1
Joo, J.B.2
Dahl, M.3
Fu, L.S.4
Zeng, Z.Z.5
Yin, Y.D.6
-
53
-
-
84884566337
-
2 nanodisks designed for Li-ion batteries: A novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface
-
2 nanodisks designed for Li-ion batteries: A novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy Environ. Sci.2013, 6, 2932–2938.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2932-2938
-
-
Kim, G.1
Jo, C.2
Kim, W.3
Chun, J.4
Yoon, S.5
Lee, J.6
Choi, W.7
|