메뉴 건너뛰기




Volumn 37, Issue , 2016, Pages 66-74

Why neurons mix: High dimensionality for higher cognition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BEHAVIOR ASSESSMENT; COGNITION; CONCEPTUAL FRAMEWORK; DIMENSIONALITY; FUNCTIONAL ASSESSMENT; HUMAN; MATHEMATICAL COMPUTING; MEASUREMENT; MENTAL TASK; MIXED SELECTIVITY; NONHUMAN; PHYSICAL PARAMETERS; PHYSICAL PHENOMENA; PRIORITY JOURNAL; PROCESS DEVELOPMENT; REVIEW; SIGNAL DETECTION; STIMULUS RESPONSE; TASK PERFORMANCE; ANIMAL; BIOLOGICAL MODEL; NERVE CELL; PHYSIOLOGY;

EID: 84956707246     PISSN: 09594388     EISSN: 18736882     Source Type: Journal    
DOI: 10.1016/j.conb.2016.01.010     Document Type: Review
Times cited : (474)

References (60)
  • 1
    • 84884758589 scopus 로고    scopus 로고
    • The structure of cognition: attentional episodes in mind and brain
    • Duncan J. The structure of cognition: attentional episodes in mind and brain. Neuron 2013, 80:35-50. 10.1016/j.neuron.2013.09.015.
    • (2013) Neuron , vol.80 , pp. 35-50
    • Duncan, J.1
  • 2
    • 33644820167 scopus 로고    scopus 로고
    • Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin card sorting test analog
    • Mansouri F.A., Matsumoto K., Tanaka K. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin card sorting test analog. J Neurosci 2006, 26:2745-2756.
    • (2006) J Neurosci , vol.26 , pp. 2745-2756
    • Mansouri, F.A.1    Matsumoto, K.2    Tanaka, K.3
  • 3
    • 34447517647 scopus 로고    scopus 로고
    • Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex
    • Churchland M.M., Shenoy K.V. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J Neurophysiol 2007, 97:4235-4257.
    • (2007) J Neurophysiol , vol.97 , pp. 4235-4257
    • Churchland, M.M.1    Shenoy, K.V.2
  • 4
    • 77954383122 scopus 로고    scopus 로고
    • Attractor concretion as a mechanism for the formation of context representations
    • Rigotti M., Rubin D.B.D., Morrison S.E., Salzman C.D., Fusi S. Attractor concretion as a mechanism for the formation of context representations. Neuroimage 2010, 52:833-847.
    • (2010) Neuroimage , vol.52 , pp. 833-847
    • Rigotti, M.1    Rubin, D.B.D.2    Morrison, S.E.3    Salzman, C.D.4    Fusi, S.5
  • 5
    • 84887390404 scopus 로고    scopus 로고
    • Context-dependent computation by recurrent dynamics in prefrontal cortex
    • Mante V., Sussillo D., Shenoy K.V., Newsome W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 2013, 503:78-84. 10.1038/nature12742.
    • (2013) Nature , vol.503 , pp. 78-84
    • Mante, V.1    Sussillo, D.2    Shenoy, K.V.3    Newsome, W.T.4
  • 7
    • 75749157403 scopus 로고    scopus 로고
    • Heterogenous population coding of a short-term memory and decision task
    • Jun J.K., Miller P., Hernández A., Zainos A., Lemus L., Brody C.D., Romo R. Heterogenous population coding of a short-term memory and decision task. J Neurosci 2010, 30:916-929. 10.1523/JNEUROSCI.2062-09.2010.
    • (2010) J Neurosci , vol.30 , pp. 916-929
    • Jun, J.K.1    Miller, P.2    Hernández, A.3    Zainos, A.4    Lemus, L.5    Brody, C.D.6    Romo, R.7
  • 8
    • 77954750667 scopus 로고    scopus 로고
    • Neuronal population coding of parametric working memory
    • Barak O., Tsodyks M., Romo R. Neuronal population coding of parametric working memory. J Neurosci 2010, 30:9424-9430. 10.1523/JNEUROSCI.1875-10.2010.
    • (2010) J Neurosci , vol.30 , pp. 9424-9430
    • Barak, O.1    Tsodyks, M.2    Romo, R.3
  • 9
    • 84876806635 scopus 로고    scopus 로고
    • Dynamic coding for cognitive control in prefrontal cortex
    • Stokes M.G., Kusunoki M., Sigala N., Nili H., Gaffan D., Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron 2013, 78:364-375. 10.1016/j.neuron.2013.01.039.
    • (2013) Neuron , vol.78 , pp. 364-375
    • Stokes, M.G.1    Kusunoki, M.2    Sigala, N.3    Nili, H.4    Gaffan, D.5    Duncan, J.6
  • 10
    • 84880918745 scopus 로고    scopus 로고
    • Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information
    • Pagan M., Urban L.S., Wohl M.P., Rust N.C. Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information. Nat Neurosci 2013, 16:1132-1139.
    • (2013) Nat Neurosci , vol.16 , pp. 1132-1139
    • Pagan, M.1    Urban, L.S.2    Wohl, M.P.3    Rust, N.C.4
  • 11
    • 84873307440 scopus 로고    scopus 로고
    • Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making
    • Neurons in primate lateral intraparietal cortex were recorded during a visual direction-discrimination task, while manipulating the presence of a saccade target in their receptive fields during decision-making. Cells were shown to multiplex decision signals with decision-irrelevant visual signals, and also display heterogeneous dynamics that is much more complex than the conventionally reported ramping activity.
    • Meister M.L., Hennig J.A., Huk A.C. Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J Neurosci 2013, 33:2254-2267. Neurons in primate lateral intraparietal cortex were recorded during a visual direction-discrimination task, while manipulating the presence of a saccade target in their receptive fields during decision-making. Cells were shown to multiplex decision signals with decision-irrelevant visual signals, and also display heterogeneous dynamics that is much more complex than the conventionally reported ramping activity.
    • (2013) J Neurosci , vol.33 , pp. 2254-2267
    • Meister, M.L.1    Hennig, J.A.2    Huk, A.C.3
  • 12
    • 84926204605 scopus 로고    scopus 로고
    • A category-free neural population supports evolving demands during decision-making
    • Raposo D., Kaufman M.T., Churchland A.K. A category-free neural population supports evolving demands during decision-making. Nat Neurosci 2014.
    • (2014) Nat Neurosci
    • Raposo, D.1    Kaufman, M.T.2    Churchland, A.K.3
  • 13
    • 0020618244 scopus 로고
    • The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats
    • McNaughton B.L., Barnes C.A., O'Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 1983, 52:41-49.
    • (1983) Exp Brain Res , vol.52 , pp. 41-49
    • McNaughton, B.L.1    Barnes, C.A.2    O'Keefe, J.3
  • 14
    • 0028839248 scopus 로고
    • Interactions between location and task affect the spatial and directional firing of hippocampal neurons
    • Markus E.J., Qin Y.L., Leonard B., Skaggs W.E., McNaughton B.L., Barnes C.A. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 1995, 15:7079-7094. http://markus.lab.uconn.edu/wp-content/uploads/sites/1005/2015/01/Markus1995.pdf.
    • (1995) J Neurosci , vol.15 , pp. 7079-7094
    • Markus, E.J.1    Qin, Y.L.2    Leonard, B.3    Skaggs, W.E.4    McNaughton, B.L.5    Barnes, C.A.6
  • 15
    • 0033697750 scopus 로고    scopus 로고
    • Hippocampal neurons encode information about different types of memory episodes occurring in the same location
    • Wood E.R., Dudchenko P.A., Robitsek R.J., Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 2000, 27:623-633. http://hsinnamon.web.wesleyan.edu/wescourses/NSB-Psyc255/Readings/17.
    • (2000) Neuron , vol.27 , pp. 623-633
    • Wood, E.R.1    Dudchenko, P.A.2    Robitsek, R.J.3    Eichenbaum, H.4
  • 16
    • 84903625567 scopus 로고    scopus 로고
    • Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas
    • McKenzie S., Frank A.J., Kinsky N.R., Porter B., Rivière P.D., Eichenbaum H. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 2014, 83:202-215. 10.1016/j.neuron.2014.05.019.
    • (2014) Neuron , vol.83 , pp. 202-215
    • McKenzie, S.1    Frank, A.J.2    Kinsky, N.R.3    Porter, B.4    Rivière, P.D.5    Eichenbaum, H.6
  • 17
    • 84939496695 scopus 로고    scopus 로고
    • Abstract context representations in primate amygdala and prefrontal cortex
    • Saez A., Rigotti M., Ostojic S., Fusi S., Salzman C.D. Abstract context representations in primate amygdala and prefrontal cortex. Neuron 2015, 87:869-881. 10.1016/j.neuron.2015.07.024.
    • (2015) Neuron , vol.87 , pp. 869-881
    • Saez, A.1    Rigotti, M.2    Ostojic, S.3    Fusi, S.4    Salzman, C.D.5
  • 18
    • 84937629687 scopus 로고    scopus 로고
    • From the neuron doctrine to neural networks
    • Yuste R. From the neuron doctrine to neural networks. Nat Rev Neurosci 2015, 16:487-497.
    • (2015) Nat Rev Neurosci , vol.16 , pp. 487-497
    • Yuste, R.1
  • 19
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?
    • DiCarlo J.J., Zoccolan D., Rust N.C. How does the brain solve visual object recognition?. Neuron 2012, 73:415-434.
    • (2012) Neuron , vol.73 , pp. 415-434
    • DiCarlo, J.J.1    Zoccolan, D.2    Rust, N.C.3
  • 21
    • 84928527851 scopus 로고    scopus 로고
    • On simplicity and complexity in the brave new world of large-scale neuroscience
    • Gao P., Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol 2015, 32:148-155.
    • (2015) Curr Opin Neurobiol , vol.32 , pp. 148-155
    • Gao, P.1    Ganguli, S.2
  • 23
    • 74849088855 scopus 로고    scopus 로고
    • Functional, but not anatomical, separation of "what" and "when" in prefrontal cortex
    • Machens C.K., Romo R., Brody C.D. Functional, but not anatomical, separation of "what" and "when" in prefrontal cortex. J Neurosci 2010, 30:350-360. 10.1523/JNEUROSCI.3276-09.2010.
    • (2010) J Neurosci , vol.30 , pp. 350-360
    • Machens, C.K.1    Romo, R.2    Brody, C.D.3
  • 24
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y., Bengio Y., Hinton G. Deep learning. Nature 2015, 521:436-444. 10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 25
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel D.H., Wiesel T.N. Receptive fields of single neurones in the cat's striate cortex. J Physiol 1959, 148:574-591.
    • (1959) J Physiol , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 26
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci 1999, 2:1019-1025.
    • (1999) Nat Neurosci , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 27
    • 34447552444 scopus 로고    scopus 로고
    • Untangling invariant object recognition
    • DiCarlo J.J., Cox D.D. Untangling invariant object recognition. Trends Cogn Sci 2007, 11:333-341.
    • (2007) Trends Cogn Sci , vol.11 , pp. 333-341
    • DiCarlo, J.J.1    Cox, D.D.2
  • 31
    • 0015261210 scopus 로고
    • Visual properties of neurons in inferotemporal cortex of the macaque
    • Gross C.G., Rocha-Miranda C., Bender D. Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 1972, 35:96-111.
    • (1972) J Neurophysiol , vol.35 , pp. 96-111
    • Gross, C.G.1    Rocha-Miranda, C.2    Bender, D.3
  • 33
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach Learn 1995, 20:273-297. 10.1007/BF00994018.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 79959677882 scopus 로고    scopus 로고
    • A simple derivation of a bound on the perceptron margin using singular value decomposition
    • Barak O., Rigotti M. A simple derivation of a bound on the perceptron margin using singular value decomposition. Neural Comput 2011, 23:1935-1943. 10.1162/NECO_a_00152.
    • (2011) Neural Comput , vol.23 , pp. 1935-1943
    • Barak, O.1    Rigotti, M.2
  • 35
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004, 304:78-80. 10.1126/science.1091277.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 36
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Natschläger T., Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002, 14:2531-2560. 10.1162/089976602760407955.
    • (2002) Neural Comput , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 37
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: spatiotemporal processing in cortical networks
    • Buonomano D.V., Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 2009, 10:113-125. 10.1038/nrn2558.
    • (2009) Nat Rev Neurosci , vol.10 , pp. 113-125
    • Buonomano, D.V.1    Maass, W.2
  • 38
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo D., Abbott L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 2009, 63:544. 10.1016/j.neuron.2009.07.018.
    • (2009) Neuron , vol.63 , pp. 544
    • Sussillo, D.1    Abbott, L.F.2
  • 39
    • 84863881230 scopus 로고    scopus 로고
    • Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
    • Rigotti M., Ben Dayan Rubin D., Wang X.-J., Fusi S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front Comput Neurosci 2010, 4:29. 10.3389/fncom.2010.00024.
    • (2010) Front Comput Neurosci , vol.4 , pp. 29
    • Rigotti, M.1    Ben Dayan Rubin, D.2    Wang, X.-J.3    Fusi, S.4
  • 40
    • 84879686840 scopus 로고    scopus 로고
    • Robust timing and motor patterns by taming chaos in recurrent neural networks
    • Laje R., Buonomano D.V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 2013, 16:925-933.
    • (2013) Nat Neurosci , vol.16 , pp. 925-933
    • Laje, R.1    Buonomano, D.V.2
  • 41
    • 0023877474 scopus 로고
    • A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons
    • Zipser D., Andersen R.A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 1988, 331:679-684.
    • (1988) Nature , vol.331 , pp. 679-684
    • Zipser, D.1    Andersen, R.A.2
  • 42
    • 0023946014 scopus 로고
    • The role of the posterior parietal cortex in coordinate transformations for visual-motor integration
    • Andersen R.A., Zipser D. The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Can J Physiol Pharmacol 1988, 66:488-501.
    • (1988) Can J Physiol Pharmacol , vol.66 , pp. 488-501
    • Andersen, R.A.1    Zipser, D.2
  • 43
    • 0030899571 scopus 로고    scopus 로고
    • Spatial transformations in the parietal cortex using basis functions
    • Pouget A., Sejnowski T.J. Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci 1997, 9:222-237.
    • (1997) J Cogn Neurosci , vol.9 , pp. 222-237
    • Pouget, A.1    Sejnowski, T.J.2
  • 44
    • 0035783962 scopus 로고    scopus 로고
    • Coordinate transformations in the visual system: how to generate gain fields and what to compute with them
    • Salinas E., Abbott L. Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Prog Brain Res 2001, 130:175-190.
    • (2001) Prog Brain Res , vol.130 , pp. 175-190
    • Salinas, E.1    Abbott, L.2
  • 45
    • 0842325646 scopus 로고    scopus 로고
    • Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation
    • Salinas E. Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. J Neurosci 2004, 24:1113-1118.
    • (2004) J Neurosci , vol.24 , pp. 1113-1118
    • Salinas, E.1
  • 46
    • 79952466096 scopus 로고    scopus 로고
    • Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons
    • Bourjaily M.A., Miller P. Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons. PLoS Comput Biol 2011, 7:e1001091. 10.1371/journal.pcbi.1001091.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1001091
    • Bourjaily, M.A.1    Miller, P.2
  • 47
    • 84864004186 scopus 로고    scopus 로고
    • Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations
    • Bourjaily M.A., Miller P. Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. J Neurophysiol 2012, 108:513-527.
    • (2012) J Neurophysiol , vol.108 , pp. 513-527
    • Bourjaily, M.A.1    Miller, P.2
  • 48
    • 67650295931 scopus 로고    scopus 로고
    • State-dependent computation using coupled recurrent networks
    • Rutishauser U., Douglas R.J. State-dependent computation using coupled recurrent networks. Neural Comput 2009, 21:478-509.
    • (2009) Neural Comput , vol.21 , pp. 478-509
    • Rutishauser, U.1    Douglas, R.J.2
  • 49
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 50
    • 84874626374 scopus 로고    scopus 로고
    • The sparseness of mixed selectivity neurons controls the generalization-discrimination trade off
    • Barak O., Rigotti M., Fusi S. The sparseness of mixed selectivity neurons controls the generalization-discrimination trade off. J Neurosci 2013, 33:3844-3856. 10.1523/JNEUROSCI.2753-12.2013.
    • (2013) J Neurosci , vol.33 , pp. 3844-3856
    • Barak, O.1    Rigotti, M.2    Fusi, S.3
  • 51
    • 84907993545 scopus 로고    scopus 로고
    • Sparseness and expansion in sensory representations
    • Babadi B., Sompolinsky H. Sparseness and expansion in sensory representations. Neuron 2014, 83:1213-1226.
    • (2014) Neuron , vol.83 , pp. 1213-1226
    • Babadi, B.1    Sompolinsky, H.2
  • 52
    • 84877582453 scopus 로고    scopus 로고
    • Random convergence of olfactory inputs in the drosophila mushroom body
    • Using anatomical tracing techniques, the authors reconstructed the connectivity between glomeruli and Kenyon cells in the Drosophila. They show that each Kenyon cell integrates input from an apparently random combination of glomeruli. These random connections could be used to expand the dimensionality of the glomerular neural representations in order to facilitate learning of olfactory associations and behaviors.
    • Caron S.J., Ruta V., Abbott L., Axel R. Random convergence of olfactory inputs in the drosophila mushroom body. Nature 2013, 497:113-117. Using anatomical tracing techniques, the authors reconstructed the connectivity between glomeruli and Kenyon cells in the Drosophila. They show that each Kenyon cell integrates input from an apparently random combination of glomeruli. These random connections could be used to expand the dimensionality of the glomerular neural representations in order to facilitate learning of olfactory associations and behaviors.
    • (2013) Nature , vol.497 , pp. 113-117
    • Caron, S.J.1    Ruta, V.2    Abbott, L.3    Axel, R.4
  • 54
    • 84907228522 scopus 로고    scopus 로고
    • Dimensionality of object representations in monkey inferotemporal cortex
    • Lehky S.R., Kiani R., Esteky H., Tanaka K. Dimensionality of object representations in monkey inferotemporal cortex. Neural Comput 2014.
    • (2014) Neural Comput
    • Lehky, S.R.1    Kiani, R.2    Esteky, H.3    Tanaka, K.4
  • 55
    • 79958164664 scopus 로고    scopus 로고
    • Attracting dynamics of frontal cortex ensembles during memory-guided decision-making
    • Balaguer-Ballester E., Lapish C.C., Seamans J.K., Durstewitz D. Attracting dynamics of frontal cortex ensembles during memory-guided decision-making. PLoS Comput Biol 2011, 7:e1002057. 10.1371/journal.pcbi.1002057.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1002057
    • Balaguer-Ballester, E.1    Lapish, C.C.2    Seamans, J.K.3    Durstewitz, D.4
  • 56
    • 84937604677 scopus 로고    scopus 로고
    • Amphetamine exerts dose-dependent changes in prefrontal cortex attractor dynamics during working memory
    • Lapish C.C., Balaguer-Ballester E., Seamans J.K., Phillips A.G., Durstewitz D. Amphetamine exerts dose-dependent changes in prefrontal cortex attractor dynamics during working memory. J Neurosci 2015, 35:10172-10187. 10.1523/JNEUROSCI.2421-14.2015.
    • (2015) J Neurosci , vol.35 , pp. 10172-10187
    • Lapish, C.C.1    Balaguer-Ballester, E.2    Seamans, J.K.3    Phillips, A.G.4    Durstewitz, D.5
  • 57
    • 84969384527 scopus 로고    scopus 로고
    • Estimating the dimensionality of neural responses with fMRI repetition suppression
    • Rigotti M., Fusi S. Estimating the dimensionality of neural responses with fMRI repetition suppression. MLINI workshop at NIPS 2015.
    • (2015) MLINI workshop at NIPS
    • Rigotti, M.1    Fusi, S.2
  • 58
    • 0032609779 scopus 로고    scopus 로고
    • The effect of correlated variability on the accuracy of a population code
    • Abbott L.F., Dayan P. The effect of correlated variability on the accuracy of a population code. Neural Comput 1999, 11:91-101.
    • (1999) Neural Comput , vol.11 , pp. 91-101
    • Abbott, L.F.1    Dayan, P.2
  • 59
    • 33745726849 scopus 로고    scopus 로고
    • Neural correlations, population coding and computation
    • Averbeck B.B., Latham P.E., Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci 2006, 7:358-366. 10.1038/nrn1888.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 358-366
    • Averbeck, B.B.1    Latham, P.E.2    Pouget, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.