-
1
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
21225900
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-99.
-
(2011)
Stat Med
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
3
-
-
71549166314
-
An introduction to modern missing data analyses
-
20006986
-
Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch Psychol. 2010;48:5-37.
-
(2010)
J Sch Psychol
, vol.48
, pp. 5-37
-
-
Baraldi, A.N.1
Enders, C.K.2
-
4
-
-
21844483562
-
Missing Data: A conceptual review for applied psychologists
-
Roth PL. Missing Data: a conceptual review for applied psychologists. Personnel Psychology. 1994;41(3):537-60.
-
(1994)
Personnel Psychology
, vol.41
, Issue.3
, pp. 537-560
-
-
Roth, P.L.1
-
5
-
-
25144472336
-
Are missing outcome data adequately handled? a review of published randomized controlled trials in major medical journals
-
16279275
-
Wood A, White IR, Thompson SG. Are missing outcome data adequately handled? a review of published randomized controlled trials in major medical journals. Clin Trials. 2004;1:368-76.
-
(2004)
Clin Trials
, vol.1
, pp. 368-376
-
-
Wood, A.1
White, I.R.2
Thompson, S.G.3
-
6
-
-
12744272198
-
Missing data in educational research: A review of reporting practices and suggestions for improvement
-
Peugh JL, Enders CK. Missing data in educational research: a review of reporting practices and suggestions for improvement. Rev Educ Res. 2004;74(4):525-56.
-
(2004)
Rev Educ Res
, vol.74
, Issue.4
, pp. 525-556
-
-
Peugh, J.L.1
Enders, C.K.2
-
7
-
-
84952497143
-
Missing-data adjustments in large surveys
-
Little RJA. Missing-data adjustments in large surveys. J Bus Econ Stat. 1988;6(3):287-96.
-
(1988)
J Bus Econ Stat
, vol.6
, Issue.3
, pp. 287-296
-
-
Little, R.J.A.1
-
8
-
-
0035748192
-
The use of multiple imputation for the analysis of missing data
-
1:STN:280:DC%2BD38%2FltlCquw%3D%3D 11778675
-
Sinharay S, Stern HS, Russell D. The use of multiple imputation for the analysis of missing data. Psychol Methods. 2001;6(4):317-29.
-
(2001)
Psychol Methods
, vol.6
, Issue.4
, pp. 317-329
-
-
Sinharay, S.1
Stern, H.S.2
Russell, D.3
-
9
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
-
2714692 19564179
-
Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
-
(2009)
BMJ
, vol.338
, pp. b2393
-
-
Sterne, J.A.C.1
White, I.R.2
Carlin, J.B.3
-
10
-
-
84855523282
-
Missing data in trial-based cost-effectiveness. Analysis: The current state of play
-
22223561
-
Noble SM, Hollingworth W, Tilling K. Missing data in trial-based cost-effectiveness. analysis: the current state of play. Health Econ. 2012;21(2):187-200.
-
(2012)
Health Econ
, vol.21
, Issue.2
, pp. 187-200
-
-
Noble, S.M.1
Hollingworth, W.2
Tilling, K.3
-
11
-
-
84863549891
-
Reporting missing data: A study of selected articles published from 2003-2007
-
Rousseau M, Simon M, Bertrand R, et al. Reporting missing data: a study of selected articles published from 2003-2007. Qual Quant. 2012;46(5):1393-406.
-
(2012)
Qual Quant
, vol.46
, Issue.5
, pp. 1393-1406
-
-
Rousseau, M.1
Simon, M.2
Bertrand, R.3
-
12
-
-
84863601626
-
A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures
-
3464662 22784200
-
Karahalios A, Baglietto L, Carlin JB, et al. A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures. BMC Med Res Methodol. 2012;12:96.
-
(2012)
BMC Med Res Methodol
, vol.12
, pp. 96
-
-
Karahalios, A.1
Baglietto, L.2
Carlin, J.B.3
-
13
-
-
84864876506
-
Missing Data: A systematic review of how they are reported and handled
-
22584299
-
Eekhout I, de Boer MR, Twisk JWR, et al. Missing Data: a systematic review of how they are reported and handled. Epidemiology. 2012;23(5):729-32.
-
(2012)
Epidemiology
, vol.23
, Issue.5
, pp. 729-732
-
-
Eekhout, I.1
De Boer, M.R.2
Twisk, J.W.R.3
-
14
-
-
84929252277
-
Handling missing data in RCTs; A review of the top medical journals
-
4247714 25407057
-
Bell ML, Fiero M, Horton NJ, et al. Handling missing data in RCTs; a review of the top medical journals. BMC Med Res Methodol. 2014;14:118.
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 118
-
-
Bell, M.L.1
Fiero, M.2
Horton, N.J.3
-
15
-
-
84925511766
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
-
25471286
-
Simons CL, Rivero-Arias O, Yu LM, et al. Multiple imputation to deal with missing EQ-5D-3L data: should we impute individual domains or the actual index? Qual Life Res. 2015;24:805-15.
-
(2015)
Qual Life Res
, vol.24
, pp. 805-815
-
-
Simons, C.L.1
Rivero-Arias, O.2
Yu, L.M.3
-
16
-
-
84894911709
-
Missing data in a multi-item instrument were best handled by multiple imputation at the item score level
-
24291505
-
Eekhout I, de Vet HCW, Twisk JWR, et al. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level. J Clin Epidemiol. 2014;67:335-42.
-
(2014)
J Clin Epidemiol
, vol.67
, pp. 335-342
-
-
Eekhout, I.1
De Vet, H.C.W.2
Twisk, J.W.R.3
-
18
-
-
77955271783
-
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
-
3990447 24748700
-
White IR, Daniel R, Royston P. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Comput Stat Data Anal. 2010;54:2267-75.
-
(2010)
Comput Stat Data Anal
, vol.54
, pp. 2267-2275
-
-
White, I.R.1
Daniel, R.2
Royston, P.3
-
19
-
-
32444450470
-
Multiple imputation of missing values: Update
-
Royston P. Multiple imputation of missing values: update. Stata J. 2005;5(2):188-201.
-
(2005)
Stata J
, vol.5
, Issue.2
, pp. 188-201
-
-
Royston, P.1
-
21
-
-
84924869404
-
Predictors of self-reported adherence to antihypertensive medicines: A multi-national, cross-sectional survey
-
Morrison VL, Holmes EAF, Parveen S, et al. Predictors of self-reported adherence to antihypertensive medicines: a multi-national, cross-sectional survey. Value Health. 2015. doi: 10.1016/j.val.2014.12.013.
-
(2015)
Value Health
-
-
Morrison, V.L.1
Holmes, E.A.F.2
Parveen, S.3
-
22
-
-
49349115364
-
Predictive validity of a medication adherence measure for hypertension control
-
Morisky DE, Ang A, Krousel-Wood M, et al. Predictive validity of a medication adherence measure for hypertension control. J Clin Hypertens. 2008;10(5):348-54.
-
(2008)
J Clin Hypertens
, vol.10
, Issue.5
, pp. 348-354
-
-
Morisky, D.E.1
Ang, A.2
Krousel-Wood, M.3
-
23
-
-
48949115334
-
Comparison of two methods of eliciting time preference for future health states
-
van der Pola M, Cairns J. Comparison of two methods of eliciting time preference for future health states. Soc Sci Med. 2008;67(5):883-9.
-
(2008)
Soc Sci Med
, vol.67
, Issue.5
, pp. 883-889
-
-
Van Der Pola, M.1
Cairns, J.2
-
24
-
-
33646501982
-
Multiple imputation of missing values: Update of ice
-
Royston P. Multiple imputation of missing values: update of ice. Stata J. 2005;5(4):527-36.
-
(2005)
Stata J
, vol.5
, Issue.4
, pp. 527-536
-
-
Royston, P.1
-
25
-
-
70349590221
-
Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables
-
Royston P. Multiple imputation of missing values: further update of ice, with an emphasis on categorical variables. Stata J. 2009;9(3):466-77.
-
(2009)
Stata J
, vol.9
, Issue.3
, pp. 466-477
-
-
Royston, P.1
-
26
-
-
48249126832
-
How should variable selection be performed with multiply imputed data?
-
18203127
-
Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data? Stat Med. 2008;27:3227-46.
-
(2008)
Stat Med
, vol.27
, pp. 3227-3246
-
-
Wood, A.M.1
White, I.R.2
Royston, P.3
-
27
-
-
84950419706
-
Handling, "don't know" survey responses: The case of the slovenian plebiscite
-
Rubin DB, Stern HS, Vehovar V. Handling, "don't know" survey responses: the case of the slovenian plebiscite. J Am Stat Assoc. 1995;90:822-8.
-
(1995)
J Am Stat Assoc
, vol.90
, pp. 822-828
-
-
Rubin, D.B.1
Stern, H.S.2
Vehovar, V.3
-
28
-
-
80051798338
-
Common statistical and research design problems in manuscripts submitted to high-impact medical journals
-
3224575 21854631
-
Fernandes-Taylor S, Hyun JK, Reeder RN, et al. Common statistical and research design problems in manuscripts submitted to high-impact medical journals. BMC Res Notes. 2011;4:304.
-
(2011)
BMC Res Notes
, vol.4
, pp. 304
-
-
Fernandes-Taylor, S.1
Hyun, J.K.2
Reeder, R.N.3
-
29
-
-
79953721465
-
Survey of editors and reviewers of high-impact psychology journals: Statistical and research design problems in submitted manuscripts
-
21560804
-
Harris A, Reeder R, Hyun J. Survey of editors and reviewers of high-impact psychology journals: statistical and research design problems in submitted manuscripts. J Psychol. 2011;145(3):195-209.
-
(2011)
J Psychol
, vol.145
, Issue.3
, pp. 195-209
-
-
Harris, A.1
Reeder, R.2
Hyun, J.3
|