메뉴 건너뛰기




Volumn , Issue , 2011, Pages 213-239

Dealing with label switching under model uncertainty

Author keywords

Dealing with label switching under model uncertainty; Final issue, model uncertainty with respect to distribution family underlying mixture; Identification of finite mixture models overfitting heterogeneity in component specific parameters; Identifying a finite mixture model under uncertainty, with respect to model specification; Identifying a unique labelling under model uncertainty; Labelling through clustering in point process representation; Overfitting heterogeneity of component specific parameters; Point process representation of a finite mixture model; Useful methods, forcing a unique labelling on draws from this posterior distribution; Using shrinkage priors on component specific location parameters

Indexed keywords

MIXTURES;

EID: 84955377181     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119995678.ch10     Document Type: Chapter
Times cited : (54)

References (36)
  • 1
    • 0002858519 scopus 로고
    • A Bayesian analysis of simple mixture problems
    • (eds J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith), Clarendon
    • Bernardo, J. M. and Girón, F. G. (1988) A Bayesian analysis of simple mixture problems. In Bayesian Statistics 3 (eds J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith) pp. 67-78, Clarendon.
    • (1988) Bayesian Statistics , vol.3 , pp. 67-78
    • Bernardo, J.M.1    Girón, F.G.2
  • 3
    • 0003019496 scopus 로고    scopus 로고
    • Bayesian inference for mixture: the label switching problem
    • (eds P. J. Green and R. Rayne). Physica, Heidelberg
    • Celeux, G. (1998) Bayesian inference for mixture: the label switching problem. In COMPSTAT 98 (eds P. J. Green and R. Rayne), pp. 227-232. Physica, Heidelberg.
    • (1998) COMPSTAT 98 , pp. 227-232
    • Celeux, G.1
  • 4
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux, G., Hurn, M. and Robert, C. P. (2000) Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 5
    • 33644514005 scopus 로고    scopus 로고
    • Multivariate mixtures of normals with unknown number of components
    • Dellaportas, P. and Papageorgiou, I. (2006) Multivariate mixtures of normals with unknown number of components. Statistics and Computing, 16, 57-68.
    • (2006) Statistics and Computing , vol.16 , pp. 57-68
    • Dellaportas, P.1    Papageorgiou, I.2
  • 7
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection
    • Fahrmeir, L., Kneib, T. and Konrath, S. (2010) Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing, 20, 203-219.
    • (2010) Statistics and Computing , vol.20 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 8
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973) A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209-230.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 10
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Frühwirth-Schnatter, S. (2001b) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association, 96, 194-209.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 11
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • Frühwirth-Schnatter, S. (2004) Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. The Econometrics Journal, 7, 143-167.
    • (2004) The Econometrics Journal , vol.7 , pp. 143-167
    • Frühwirth-Schnatter, S.1
  • 13
    • 84867119179 scopus 로고    scopus 로고
    • Comment on article by T. Rydën on 'EM versus Markov chain Monte Carlo for estimation of hidden Markov models'
    • Frühwirth-Schnatter, S. (2008) Comment on article by T. Rydën on 'EM versus Markov chain Monte Carlo for estimation of hidden Markov models'. Bayesian Analysis, 3, 689-698.
    • (2008) Bayesian Analysis , vol.3 , pp. 689-698
    • Frühwirth-Schnatter, S.1
  • 14
    • 77749242735 scopus 로고    scopus 로고
    • Bayesian Inference for finite mixtures of univariate and multivariate skew normal and skewt distributions
    • Frühwirth-Schnatter, S. and Pyne, S. (2010) Bayesian Inference for finite mixtures of univariate and multivariate skew normal and skew-t distributions. Biostatistics, 11, 317-336.
    • (2010) Biostatistics , vol.11 , pp. 317-336
    • Frühwirth-Schnatter, S.1    Pyne, S.2
  • 15
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • Green, P. J. and Richardson, S. (2001) Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, 28, 355-375.
    • (2001) Scandinavian Journal of Statistics , vol.28 , pp. 355-375
    • Green, P.J.1    Richardson, S.2
  • 16
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • Griffin, J. E. and Brown, P. J. (2010) Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis, 5, 171-188.
    • (2010) Bayesian Analysis , vol.5 , pp. 171-188
    • Griffin, J.E.1    Brown, P.J.2
  • 17
    • 60849109935 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models under genuine multimodality
    • Grün, B. and Leisch, F. (2009) Dealing with label switching in mixture models under genuine multimodality. Journal of Multivariate Analysis, 100, 851-861.
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 851-861
    • Grün, B.1    Leisch, F.2
  • 18
    • 77951193693 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for parameter estimation in multidimensional continuous time Markov switching models
    • Hahn, M., Frühwirth-Schnatter, S. and Sass, J. (2010) Markov chain Monte Carlo methods for parameter estimation in multidimensional continuous time Markov switching models. Journal of Financial Econometrics, 8, 88-121.
    • (2010) Journal of Financial Econometrics , vol.8 , pp. 88-121
    • Hahn, M.1    Frühwirth-Schnatter, S.2    Sass, J.3
  • 19
    • 1542469706 scopus 로고    scopus 로고
    • Bayesian model selection in finite mixtures by marginal density decompositions
    • Ishwaran, H., James, L. F. and Sun, J. (2001) Bayesian model selection in finite mixtures by marginal density decompositions. Journal of the American Statistical Association, 96, 1316-1332.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1316-1332
    • Ishwaran, H.1    James, L.F.2    Sun, J.3
  • 20
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling
    • Jasra, A., Holmes, C. C. and Stephens, D. A. (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling. Statistical Science, 20, 50-67.
    • (2005) Statistical Science , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 21
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C. (2000) Consistent estimation of the order of mixture models. Sankhya A, 62, 49-66.
    • (2000) Sankhya A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 24
    • 24344434627 scopus 로고    scopus 로고
    • On the posterior distribution of the number of components in a finite mixture
    • Nobile, A. (2004) On the posterior distribution of the number of components in a finite mixture. Annals of Statistics, 32, 2044-2073.
    • (2004) Annals of Statistics , vol.32 , pp. 2044-2073
    • Nobile, A.1
  • 25
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: the allocation sampler
    • Nobile, A. and Fearnside, A. (2007) Bayesian finite mixtures with an unknown number of components: the allocation sampler. Statistics and Computing, 17, 147-162.
    • (2007) Statistics and Computing , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 26
  • 29
    • 84955408679 scopus 로고    scopus 로고
    • Asymptotic behaviour of the posterior distribution in overfitted mixture models. Technical Report, ENSEA-CREST
    • Rousseau, J. and Mengersen, K. (2010) Asymptotic behaviour of the posterior distribution in overfitted mixture models. Technical Report, ENSEA-CREST.
    • (2010)
    • Rousseau, J.1    Mengersen, K.2
  • 30
    • 77953478408 scopus 로고    scopus 로고
    • Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models
    • Sperrin, M., Jaki, T. and Wit, E. (2010) Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models. Statistics and Computing, 20, 357-366.
    • (2010) Statistics and Computing , vol.20 , pp. 357-366
    • Sperrin, M.1    Jaki, T.2    Wit, E.3
  • 31
    • 62049085137 scopus 로고    scopus 로고
    • Reversible jump and the label switching problem in hidden Markov models
    • Spezia, L. (2009) Reversible jump and the label switching problem in hidden Markov models. Journal of Statistical Planning and Inference, 139, 2305-2315.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , pp. 2305-2315
    • Spezia, L.1
  • 32
    • 0003436017 scopus 로고    scopus 로고
    • Bayesian methods for mixtures of normal distributions
    • DPhil Thesis, University of Oxford
    • Stephens, M. (1997) Bayesian methods for mixtures of normal distributions. DPhil Thesis, University of Oxford.
    • (1997)
    • Stephens, M.1
  • 33
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods
    • Stephens, M. (2000a) Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. Annals of Statistics, 28, 40-74.
    • (2000) Annals of Statistics , vol.28 , pp. 40-74
    • Stephens, M.1
  • 36
    • 84955375980 scopus 로고    scopus 로고
    • Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination
    • Technical Report, Department of Statistics, University of Oxford
    • Yau, C. and Holmes, C. (2010) Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination. Technical Report, Department of Statistics, University of Oxford.
    • (2010)
    • Yau, C.1    Holmes, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.