-
1
-
-
4644321604
-
The use of gold nanoparticles to enhance radiotherapy in mice
-
Hainfeld, J. F., Slatkin, D. N. & Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309 (2004).
-
(2004)
Phys. Med. Biol.
, vol.49
, pp. N309
-
-
Hainfeld, J.F.1
Slatkin, D.N.2
Smilowitz, H.M.3
-
2
-
-
22544458178
-
Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study
-
Cho, S. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol. 50, N163 (2005).
-
(2005)
Phys. Med. Biol.
, vol.50
, pp. N163
-
-
Cho, S.1
-
3
-
-
33644956110
-
Gold nanoparticles: A new X-ray contrast agent
-
Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Brit. J. Radiol. 79, 248-53 (2006).
-
(2006)
Brit. J. Radiol.
, vol.79
, pp. 248-253
-
-
Hainfeld, J.F.1
Slatkin, D.N.2
Focella, T.M.3
Smilowitz, H.M.4
-
4
-
-
58149216011
-
Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles
-
McMahon, S. J., Mendenhall, M. H., Jain, S. & Currell, F. Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys. Med. Biol. 53, 5635-51 (2008).
-
(2008)
Phys. Med. Biol.
, vol.53
, pp. 5635-5651
-
-
McMahon, S.J.1
Mendenhall, M.H.2
Jain, S.3
Currell, F.4
-
5
-
-
22344449606
-
Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation
-
Foley, E. A., Carter, J. D., Shan, F. & Guo, T. Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chem. Commun. 25, 3192 (2005).
-
(2005)
Chem. Commun.
, vol.25
, pp. 3192
-
-
Foley, E.A.1
Carter, J.D.2
Shan, F.3
Guo, T.4
-
6
-
-
35548987636
-
Nanoscale energy deposition by X-ray absorbing nanostructures
-
Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D. & Guo, T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B 111, 11622-5 (2007).
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 11622-11625
-
-
Carter, J.D.1
Cheng, N.N.2
Qu, Y.3
Suarez, G.D.4
Guo, T.5
-
7
-
-
65649111720
-
Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy
-
Rahman, W. N. et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5, 136 (2009).
-
(2009)
Nanomedicine
, vol.5
, pp. 136
-
-
Rahman, W.N.1
-
8
-
-
77953162813
-
Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy
-
Chithrani, D. B. et al. Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiat. Res. 173, 719-728 (2010).
-
(2010)
Radiat. Res.
, vol.173
, pp. 719-728
-
-
Chithrani, D.B.1
-
9
-
-
76149129758
-
Enhancement of cell radiation sensitivity by pegylated gold nanoparticles
-
Liu, C. J. et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol. 55, 931-945 (2010).
-
(2010)
Phys. Med. Biol.
, vol.55
, pp. 931-945
-
-
Liu, C.J.1
-
10
-
-
80054076167
-
Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles
-
McMahon, S. J. et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 1, (2011) doi: 10.1038/srep01725.
-
(2011)
Sci. Rep.
, vol.1
-
-
McMahon, S.J.1
-
11
-
-
77954735630
-
Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations
-
Jones, B. L., Krishnan, S. & Cho, S. H. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med. Phys. 37, 3809 (2010).
-
(2010)
Med. Phys.
, vol.37
, pp. 3809
-
-
Jones Krishnan L B, S.1
Cho, S.H.2
-
12
-
-
79551667662
-
Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production
-
Leung, M. K. K. et al. Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys. 38, 624 (2011).
-
(2011)
Med. Phys.
, vol.38
, pp. 624
-
-
Leung, M.K.K.1
-
13
-
-
84874901312
-
Reply to the comment on Monte Carlo simulation on a gold nanoparticle irradiated by electron beams
-
Chow, J. C. L., Keller, H. & Jaffray, D. A. Reply to the comment on Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys. Med. Biol. 58, 2003 (2013).
-
(2003)
Phys. Med. Biol.
, vol.58
, pp. 2013
-
-
Chow, J.C.L.1
Keller, H.2
Jaffray, D.A.3
-
14
-
-
51649111448
-
Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles
-
Butterworth, K. T. et al. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res. 170, 381-387 (2008).
-
(2008)
Radiat. Res.
, vol.170
, pp. 381-387
-
-
Butterworth, K.T.1
-
15
-
-
77954414684
-
Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy
-
Butterworth, K. T. et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21, 295101 (2010).
-
(2010)
Nanotechnology
, vol.21
, pp. 295101
-
-
Butterworth, K.T.1
-
16
-
-
67349243478
-
Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution
-
Brun, E., Sanche, L. & Sicard-Roselli, C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface. B 72, 128-134 (2009).
-
(2009)
Colloid Surface. B
, vol.72
, pp. 128-134
-
-
Brun, E.1
Sanche, L.2
Sicard-Roselli, C.3
-
17
-
-
84914145654
-
Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells
-
Cui, L. et al. Hypoxia and Cellular Localization Influence the Radiosensitizing Effect of Gold Nanoparticles (AuNPs) in Breast Cancer Cells. Radiat. Res. 182, 475-488 (2014).
-
(2014)
Radiat. Res.
, vol.182
, pp. 475-488
-
-
Cui, L.1
-
18
-
-
84870344590
-
Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles
-
Coulter, J. A. et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. International Journal of Nanomedicine 7, 2673-2685 (2012).
-
(2012)
International Journal of Nanomedicine
, vol.7
, pp. 2673-2685
-
-
Coulter, J.A.1
-
19
-
-
80054079689
-
Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy
-
McMahon, S. J. et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol. 100, 412-416 (2011).
-
(2011)
Radiother. Oncol.
, vol.100
, pp. 412-416
-
-
McMahon, S.J.1
-
20
-
-
79961069906
-
Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
-
Lechtman, E. et al. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol. 56, 4631 (2011).
-
(2011)
Phys. Med. Biol.
, vol.56
, pp. 4631
-
-
Lechtman, E.1
-
21
-
-
0345308734
-
-
date of access: 06/10/2015
-
Rasband, W. S. & ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. , http://imagej.nih.gov/ij/(1997-2014) date of access: 06/10/2015.
-
National Institutes of Health, Bethesda, Maryland, USA
-
-
Rasband, W.S.1
ImageJ, U.S.2
-
22
-
-
0016326866
-
Structure, biochemistry, and functions of the nuclear envelope
-
Franke, W. W. Structure, biochemistry, and functions of the nuclear envelope. Int. Rev. Cytol. Suppl 4, 71-236 (1974).
-
(1974)
Int. Rev. Cytol. Suppl
, vol.4
, pp. 71-236
-
-
Franke, W.W.1
-
23
-
-
0025247954
-
Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components
-
Reichelt, R. et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883-894 (1990).
-
(1990)
J. Cell Biol.
, vol.110
, pp. 883-894
-
-
Reichelt, R.1
-
24
-
-
8844226004
-
Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography
-
Beck, M. et al. Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science 306, 1387-1390 (2004).
-
(2004)
Science
, vol.306
, pp. 1387-1390
-
-
Beck, M.1
-
25
-
-
0036842265
-
Low-energy electron penetration range in liquid water
-
Meesungnoen, J., Jay-Gerin, J. P., Filali-Mouhim, A. & Mankhetkorn, S. Low-energy electron penetration range in liquid water. Radiat. Res. 158, 657-660 (2002).
-
(2002)
Radiat. Res.
, vol.158
, pp. 657-660
-
-
Meesungnoen, J.1
Jay-Gerin, J.P.2
Filali-Mouhim, A.3
Mankhetkorn, S.4
-
27
-
-
84864493211
-
Physical basis and biological mechanisms of gold nanoparticle radiosensitization
-
Butterworth, K. T., McMahon, S. J., Currell, F. J. & Prise, K. M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4, 4830-4838 (2012).
-
(2012)
Nanoscale
, vol.4
, pp. 4830-4838
-
-
Butterworth, K.T.1
McMahon, S.J.2
Currell, F.J.3
Prise, K.M.4
-
28
-
-
84877359755
-
A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness
-
Lechtman, E. et al. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys. Med. Biol. 58, 3075-3087 (2013).
-
(2013)
Phys. Med. Biol.
, vol.58
, pp. 3075-3087
-
-
Lechtman, E.1
-
29
-
-
84896781366
-
Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons
-
Walzlein, C., Scifoni, E., Kramer, M. & Durante, M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys. Med. Biol. 59, 1441-1458 (2014).
-
(2014)
Phys. Med. Biol.
, vol.59
, pp. 1441-1458
-
-
Walzlein, C.1
Scifoni, E.2
Kramer, M.3
Durante, M.4
-
30
-
-
84906519409
-
A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions
-
Sicard-Roselli, C. et al. A New Mechanism for Hydroxyl Radical Production in Irradiated Nanoparticle Solutions. Small 10, 3338-3346 (2014).
-
(2014)
Small
, vol.10
, pp. 3338-3346
-
-
Sicard-Roselli, C.1
-
31
-
-
84907081757
-
The role of mitochondrial function in gold nanoparticle mediated radiosensitisation
-
Taggart, L., McMahon, S., Currell, F., Prise, K. & Butterworth, K. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnology 5, 1-12 (2014).
-
(2014)
Cancer Nanotechnology
, vol.5
, pp. 1-12
-
-
Taggart, L.1
McMahon, S.2
Currell, F.3
Prise, K.4
Butterworth, K.5
-
32
-
-
78650820860
-
Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies
-
Jain, S. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 79, 531-539 (2011).
-
(2011)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.79
, pp. 531-539
-
-
Jain, S.1
-
33
-
-
84960962997
-
Action of X-rays on mammalian cells
-
Puck, T. T. & Marcus, P. I. Action of X-rays on mammalian cells. J. Exp. Med. 103, 653-666 (1956).
-
(1956)
J. Exp. Med.
, vol.103
, pp. 653-666
-
-
Puck, T.T.1
Marcus, P.I.2
-
34
-
-
42049093463
-
Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation
-
Botchway, S. W., Parker, A. W., Bisby, R. H. & Crisostomo, A. G. Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation. Microsc. Res. Tech. 71, 267-273 (2008).
-
(2008)
Microsc. Res. Tech.
, vol.71
, pp. 267-273
-
-
Botchway, S.W.1
Parker, A.W.2
Bisby, R.H.3
Crisostomo, A.G.4
-
35
-
-
84901308765
-
Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams
-
Rahman, W. N. et al. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine 9, 2459-2467 (2014).
-
(2014)
International Journal of Nanomedicine
, vol.9
, pp. 2459-2467
-
-
Rahman, W.N.1
-
36
-
-
0003523755
-
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
-
Date of access 06/10/2015
-
Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Radiation Physics Division, PML, NIST, http://www.nist.gov/pml/data/xraycoef/index.cfm (1996) Date of access 06/10/2015.
-
Radiation Physics Division, PML, NIST
, vol.1996
-
-
Hubbell, J.H.1
Seltzer, S.M.2
-
37
-
-
0028345375
-
Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size
-
Scholz, M. & Kraft, G. Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size. Radiat. Prot. Dosim. 52, 29-33 (1994).
-
(1994)
Radiat. Prot. Dosim.
, vol.52
, pp. 29-33
-
-
Scholz, M.1
Kraft, G.2
-
38
-
-
77949624414
-
Sphere-Sphere intersection
-
Date of access 06/10/2015
-
Weisstein, E. W. "Sphere-Sphere Intersection." From MathWorld-A Wolfram Web Resource. , http://mathworld.wolfram.com/Sphere-SphereIntersection.html. Date of access 06/10/2015.
-
From MathWorld-A Wolfram Web Resource
-
-
Weisstein, E.W.1
-
39
-
-
43449111217
-
Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water
-
Dingfelder, M. et al. Comparisons of calculations with PARTRAC and NOREC: transport of electrons in liquid water. Radiat. Res. 169, 584-594 (2008).
-
(2008)
Radiat. Res.
, vol.169
, pp. 584-594
-
-
Dingfelder, M.1
|