메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Imaging and radiation effects of gold nanoparticles in tumour cells

Author keywords

[No Author keywords available]

Indexed keywords

GOLD; METAL NANOPARTICLE;

EID: 84955299319     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep19442     Document Type: Article
Times cited : (109)

References (39)
  • 1
    • 4644321604 scopus 로고    scopus 로고
    • The use of gold nanoparticles to enhance radiotherapy in mice
    • Hainfeld, J. F., Slatkin, D. N. & Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309 (2004).
    • (2004) Phys. Med. Biol. , vol.49 , pp. N309
    • Hainfeld, J.F.1    Slatkin, D.N.2    Smilowitz, H.M.3
  • 2
    • 22544458178 scopus 로고    scopus 로고
    • Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study
    • Cho, S. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol. 50, N163 (2005).
    • (2005) Phys. Med. Biol. , vol.50 , pp. N163
    • Cho, S.1
  • 4
    • 58149216011 scopus 로고    scopus 로고
    • Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles
    • McMahon, S. J., Mendenhall, M. H., Jain, S. & Currell, F. Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys. Med. Biol. 53, 5635-51 (2008).
    • (2008) Phys. Med. Biol. , vol.53 , pp. 5635-5651
    • McMahon, S.J.1    Mendenhall, M.H.2    Jain, S.3    Currell, F.4
  • 5
    • 22344449606 scopus 로고    scopus 로고
    • Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation
    • Foley, E. A., Carter, J. D., Shan, F. & Guo, T. Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chem. Commun. 25, 3192 (2005).
    • (2005) Chem. Commun. , vol.25 , pp. 3192
    • Foley, E.A.1    Carter, J.D.2    Shan, F.3    Guo, T.4
  • 6
    • 35548987636 scopus 로고    scopus 로고
    • Nanoscale energy deposition by X-ray absorbing nanostructures
    • Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D. & Guo, T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B 111, 11622-5 (2007).
    • (2007) J. Phys. Chem. B , vol.111 , pp. 11622-11625
    • Carter, J.D.1    Cheng, N.N.2    Qu, Y.3    Suarez, G.D.4    Guo, T.5
  • 7
    • 65649111720 scopus 로고    scopus 로고
    • Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy
    • Rahman, W. N. et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5, 136 (2009).
    • (2009) Nanomedicine , vol.5 , pp. 136
    • Rahman, W.N.1
  • 8
    • 77953162813 scopus 로고    scopus 로고
    • Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy
    • Chithrani, D. B. et al. Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiat. Res. 173, 719-728 (2010).
    • (2010) Radiat. Res. , vol.173 , pp. 719-728
    • Chithrani, D.B.1
  • 9
    • 76149129758 scopus 로고    scopus 로고
    • Enhancement of cell radiation sensitivity by pegylated gold nanoparticles
    • Liu, C. J. et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol. 55, 931-945 (2010).
    • (2010) Phys. Med. Biol. , vol.55 , pp. 931-945
    • Liu, C.J.1
  • 10
    • 80054076167 scopus 로고    scopus 로고
    • Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles
    • McMahon, S. J. et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 1, (2011) doi: 10.1038/srep01725.
    • (2011) Sci. Rep. , vol.1
    • McMahon, S.J.1
  • 11
    • 77954735630 scopus 로고    scopus 로고
    • Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations
    • Jones, B. L., Krishnan, S. & Cho, S. H. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med. Phys. 37, 3809 (2010).
    • (2010) Med. Phys. , vol.37 , pp. 3809
    • Jones Krishnan L B, S.1    Cho, S.H.2
  • 12
    • 79551667662 scopus 로고    scopus 로고
    • Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production
    • Leung, M. K. K. et al. Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys. 38, 624 (2011).
    • (2011) Med. Phys. , vol.38 , pp. 624
    • Leung, M.K.K.1
  • 13
    • 84874901312 scopus 로고    scopus 로고
    • Reply to the comment on Monte Carlo simulation on a gold nanoparticle irradiated by electron beams
    • Chow, J. C. L., Keller, H. & Jaffray, D. A. Reply to the comment on Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys. Med. Biol. 58, 2003 (2013).
    • (2003) Phys. Med. Biol. , vol.58 , pp. 2013
    • Chow, J.C.L.1    Keller, H.2    Jaffray, D.A.3
  • 14
    • 51649111448 scopus 로고    scopus 로고
    • Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles
    • Butterworth, K. T. et al. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res. 170, 381-387 (2008).
    • (2008) Radiat. Res. , vol.170 , pp. 381-387
    • Butterworth, K.T.1
  • 15
    • 77954414684 scopus 로고    scopus 로고
    • Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy
    • Butterworth, K. T. et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21, 295101 (2010).
    • (2010) Nanotechnology , vol.21 , pp. 295101
    • Butterworth, K.T.1
  • 16
    • 67349243478 scopus 로고    scopus 로고
    • Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution
    • Brun, E., Sanche, L. & Sicard-Roselli, C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface. B 72, 128-134 (2009).
    • (2009) Colloid Surface. B , vol.72 , pp. 128-134
    • Brun, E.1    Sanche, L.2    Sicard-Roselli, C.3
  • 17
    • 84914145654 scopus 로고    scopus 로고
    • Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells
    • Cui, L. et al. Hypoxia and Cellular Localization Influence the Radiosensitizing Effect of Gold Nanoparticles (AuNPs) in Breast Cancer Cells. Radiat. Res. 182, 475-488 (2014).
    • (2014) Radiat. Res. , vol.182 , pp. 475-488
    • Cui, L.1
  • 18
    • 84870344590 scopus 로고    scopus 로고
    • Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles
    • Coulter, J. A. et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. International Journal of Nanomedicine 7, 2673-2685 (2012).
    • (2012) International Journal of Nanomedicine , vol.7 , pp. 2673-2685
    • Coulter, J.A.1
  • 19
    • 80054079689 scopus 로고    scopus 로고
    • Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy
    • McMahon, S. J. et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol. 100, 412-416 (2011).
    • (2011) Radiother. Oncol. , vol.100 , pp. 412-416
    • McMahon, S.J.1
  • 20
    • 79961069906 scopus 로고    scopus 로고
    • Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
    • Lechtman, E. et al. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol. 56, 4631 (2011).
    • (2011) Phys. Med. Biol. , vol.56 , pp. 4631
    • Lechtman, E.1
  • 22
    • 0016326866 scopus 로고
    • Structure, biochemistry, and functions of the nuclear envelope
    • Franke, W. W. Structure, biochemistry, and functions of the nuclear envelope. Int. Rev. Cytol. Suppl 4, 71-236 (1974).
    • (1974) Int. Rev. Cytol. Suppl , vol.4 , pp. 71-236
    • Franke, W.W.1
  • 23
    • 0025247954 scopus 로고
    • Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components
    • Reichelt, R. et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883-894 (1990).
    • (1990) J. Cell Biol. , vol.110 , pp. 883-894
    • Reichelt, R.1
  • 24
    • 8844226004 scopus 로고    scopus 로고
    • Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography
    • Beck, M. et al. Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science 306, 1387-1390 (2004).
    • (2004) Science , vol.306 , pp. 1387-1390
    • Beck, M.1
  • 27
    • 84864493211 scopus 로고    scopus 로고
    • Physical basis and biological mechanisms of gold nanoparticle radiosensitization
    • Butterworth, K. T., McMahon, S. J., Currell, F. J. & Prise, K. M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4, 4830-4838 (2012).
    • (2012) Nanoscale , vol.4 , pp. 4830-4838
    • Butterworth, K.T.1    McMahon, S.J.2    Currell, F.J.3    Prise, K.M.4
  • 28
    • 84877359755 scopus 로고    scopus 로고
    • A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness
    • Lechtman, E. et al. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys. Med. Biol. 58, 3075-3087 (2013).
    • (2013) Phys. Med. Biol. , vol.58 , pp. 3075-3087
    • Lechtman, E.1
  • 29
    • 84896781366 scopus 로고    scopus 로고
    • Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons
    • Walzlein, C., Scifoni, E., Kramer, M. & Durante, M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys. Med. Biol. 59, 1441-1458 (2014).
    • (2014) Phys. Med. Biol. , vol.59 , pp. 1441-1458
    • Walzlein, C.1    Scifoni, E.2    Kramer, M.3    Durante, M.4
  • 30
    • 84906519409 scopus 로고    scopus 로고
    • A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions
    • Sicard-Roselli, C. et al. A New Mechanism for Hydroxyl Radical Production in Irradiated Nanoparticle Solutions. Small 10, 3338-3346 (2014).
    • (2014) Small , vol.10 , pp. 3338-3346
    • Sicard-Roselli, C.1
  • 31
    • 84907081757 scopus 로고    scopus 로고
    • The role of mitochondrial function in gold nanoparticle mediated radiosensitisation
    • Taggart, L., McMahon, S., Currell, F., Prise, K. & Butterworth, K. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnology 5, 1-12 (2014).
    • (2014) Cancer Nanotechnology , vol.5 , pp. 1-12
    • Taggart, L.1    McMahon, S.2    Currell, F.3    Prise, K.4    Butterworth, K.5
  • 32
    • 78650820860 scopus 로고    scopus 로고
    • Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies
    • Jain, S. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 79, 531-539 (2011).
    • (2011) Int. J. Radiat. Oncol. Biol. Phys. , vol.79 , pp. 531-539
    • Jain, S.1
  • 33
    • 84960962997 scopus 로고
    • Action of X-rays on mammalian cells
    • Puck, T. T. & Marcus, P. I. Action of X-rays on mammalian cells. J. Exp. Med. 103, 653-666 (1956).
    • (1956) J. Exp. Med. , vol.103 , pp. 653-666
    • Puck, T.T.1    Marcus, P.I.2
  • 34
    • 42049093463 scopus 로고    scopus 로고
    • Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation
    • Botchway, S. W., Parker, A. W., Bisby, R. H. & Crisostomo, A. G. Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation. Microsc. Res. Tech. 71, 267-273 (2008).
    • (2008) Microsc. Res. Tech. , vol.71 , pp. 267-273
    • Botchway, S.W.1    Parker, A.W.2    Bisby, R.H.3    Crisostomo, A.G.4
  • 35
    • 84901308765 scopus 로고    scopus 로고
    • Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams
    • Rahman, W. N. et al. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine 9, 2459-2467 (2014).
    • (2014) International Journal of Nanomedicine , vol.9 , pp. 2459-2467
    • Rahman, W.N.1
  • 36
    • 0003523755 scopus 로고    scopus 로고
    • Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
    • Date of access 06/10/2015
    • Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Radiation Physics Division, PML, NIST, http://www.nist.gov/pml/data/xraycoef/index.cfm (1996) Date of access 06/10/2015.
    • Radiation Physics Division, PML, NIST , vol.1996
    • Hubbell, J.H.1    Seltzer, S.M.2
  • 37
    • 0028345375 scopus 로고
    • Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size
    • Scholz, M. & Kraft, G. Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size. Radiat. Prot. Dosim. 52, 29-33 (1994).
    • (1994) Radiat. Prot. Dosim. , vol.52 , pp. 29-33
    • Scholz, M.1    Kraft, G.2
  • 38
    • 77949624414 scopus 로고    scopus 로고
    • Sphere-Sphere intersection
    • Date of access 06/10/2015
    • Weisstein, E. W. "Sphere-Sphere Intersection." From MathWorld-A Wolfram Web Resource. , http://mathworld.wolfram.com/Sphere-SphereIntersection.html. Date of access 06/10/2015.
    • From MathWorld-A Wolfram Web Resource
    • Weisstein, E.W.1
  • 39
    • 43449111217 scopus 로고    scopus 로고
    • Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water
    • Dingfelder, M. et al. Comparisons of calculations with PARTRAC and NOREC: transport of electrons in liquid water. Radiat. Res. 169, 584-594 (2008).
    • (2008) Radiat. Res. , vol.169 , pp. 584-594
    • Dingfelder, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.